On the stability of Riemannian manifold with parallel spinors

被引:54
作者
Dai, XZ [1 ]
Wang, XD
Wei, GF
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00222-004-0424-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by the recent work [HHM03], we prove two stability results for compact Riemannian manifolds with nonzero parallel spinors. Our first result says that Ricci flat metrics which also admit nonzero parallel spinors are stable (in the direction of changes in conformal structures) as the critical points of the total scalar curvature functional. Our second result, which is a local version of the first one, shows that any metric of positive scalar curvature cannot lie too close to a metric with nonzero parallel spinor. We also prove a rigidity result for special holonomy metrics. In the case of SU(m) holonomy, the rigidity result implies that scalar flat deformations of Calabi-Yau metric must be Calabi-Yau. Finally we explore the connection with a positive mass theorem of [D03], which presents another approach to proving these stability and rigidity results.
引用
收藏
页码:151 / 176
页数:26
相关论文
共 39 条
[1]  
[Anonymous], SEIBERGWITTEN EQUATI
[2]  
BELEGRADEK I, 2004, INT MATH RES NOTICES, P56
[3]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[4]  
BOGOMOLOV FA, 1978, DOKL AKAD NAUK SSSR+, V243, P1101
[5]   THE FUNDAMENTAL GROUP AND THE SPECTRUM OF THE LAPLACIAN [J].
BROOKS, R .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) :581-598
[6]  
Bryant R L, MATHDG0305124
[7]   METRICS WITH EXCEPTIONAL HOLONOMY [J].
BRYANT, RL .
ANNALS OF MATHEMATICS, 1987, 126 (03) :525-576
[8]   VACUUM CONFIGURATIONS FOR SUPERSTRINGS [J].
CANDELAS, P ;
HOROWITZ, GT ;
STROMINGER, A ;
WITTEN, E .
NUCLEAR PHYSICS B, 1985, 258 (01) :46-74
[9]  
CAO HD, MATHDG0404165
[10]  
Cheeger J., 1971, J. Differ. Geom., V6, P119, DOI 10.4310/jdg/1214430220