Extending the Power Range of a Solar inverter

被引:0
作者
Boscanino, V. [1 ]
Cipriani, G. [1 ]
Di Dio, V. [1 ]
Mammana, M. [1 ]
机构
[1] Univ Palermo, Dept Energy Informat Engn & Math Models DEIM, Viale Sci,Bldg 9, Palermo, Italy
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE) | 2018年
关键词
maximum power point; photovoltaic module; power inverter; solar energy; TRACKING;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solar inverters feature a minimum and maximum limit of the maximum power point voltage. Overcoming these limits leads to a disconnection of the power equipment, thus wasting the solar energy. In this paper, a solution to extend the power range of a solar inverter is presented. The proposed solution extends he minimum maximum power point limit of a commercial solar inverter by means of a battery energy storage system, including a DC/DC power converter. The battery energy storage system is connected in series to the photovoltaic module. If the photovoltaic module voltage drops below the minimum maximum power point limit, the battery energy storage system is enabled thus boosting the input voltage of the solar inverter avoiding any disconnection of the equipment. The model is implemented in MAT LAB/Simulink environment. Simulation results are shown to test the efficiency of the proposed solution. As it will be shown by simulation results, even under partial shading conditions, any equipment disconnection is successfully avoided.
引用
收藏
页数:5
相关论文
共 13 条
[1]   Decoupled Control Scheme of Grid-Connected Split-Source Inverters [J].
Abdelhakim, Ahmed ;
Mattavelli, Paolo ;
Boscaino, Valeria ;
Lullo, Giuseppe .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (08) :6202-6211
[2]   Four Quasi-Z-Source Inverters [J].
Anderson, Joel ;
Peng, F. Z. .
2008 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-10, 2008, :2743-2749
[3]  
Blaabjerg F., 2013, 3 INT C EL POW EN CO
[4]  
Boscaino V, 2016, IEEE IND ELEC, P3317, DOI 10.1109/IECON.2016.7793554
[5]  
Cipriani G, 2015, APPL POWER ELECT CO, P3060, DOI 10.1109/APEC.2015.7104788
[6]   Comparison of photovoltaic array maximum power point tracking techniques [J].
Esram, Trishan ;
Chapman, Patrick L. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (02) :439-449
[7]   Implementation of a DSP-controlled photovoltaic system with peak power tracking [J].
Hua, CC ;
Lin, JG ;
Shen, CM .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1998, 45 (01) :99-107
[8]   MAXIMUM PHOTOVOLTAIC POWER TRACKING - AN ALGORITHM FOR RAPIDLY CHANGING ATMOSPHERIC CONDITIONS [J].
HUSSEIN, KH ;
MUTA, I ;
HOSHINO, T ;
OSAKADA, M .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1995, 142 (01) :59-64
[9]   Development of a microcontroller-based, photovoltaic maximum power point tracking control system [J].
Koutroulis, E ;
Kalaitzakis, K ;
Voulgaris, NC .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2001, 16 (01) :46-54
[10]   Power-electronic systems for the grid integration of renewable energy sources:: A survey [J].
Manuel Carrasco, Juan ;
Franquelo, Leopoldo G. ;
Bialasiewicz, Jan T. ;
Galvan, Eduardo ;
Portillo, Ramon ;
Martin Prats, Maria ;
Ignacio Leon, Jose ;
Moreno-Alfonso, Narciso .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (04) :1002-1016