Self-assembly routes towards creating superconducting and magnetic arrays

被引:3
|
作者
Zhukov, AA [1 ]
Filby, ET
Goncharov, AV
Ghanem, MA
Bartlett, PN
Boardman, R
Fangohr, H
Metlushko, VV
Novosad, V
Karapetrov, G
de Groot, PAJ
机构
[1] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
[3] Univ Southampton, Sch Engn Sci, Southampton SO17 1BJ, Hants, England
[4] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[5] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/s10909-005-3936-x
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using self-assembly from colloidal suspensions of polystyrene latex spheres we prepared well-ordered templates. By electrochemical deposition of magnetic and superconducting metals in the pores of such templates highly ordered magnetic and superconducting anti-dot nano-structures with 3D architectures were created. Further developments of this template preparation method allow us to obtain dot arrays and even more complicated structures. In magnetic anti-dot arrays we observe a large increase in coercive field produced by nanoscale (50-1000nm) holes. We also find the coercive field to demonstrate an oscillatory dependence on film thickness. In magnetic dot arrays we have explored the genesis of 3D magnetic vortices and determined the critical dot size. Superconducting Pb anti-dot arrays show pronounced Little-Parks oscillations in Tc and matching effects in magnetization and magnetic susceptibility. The spherical shape of the holes results in significantly reduced pinning strength as compared to standard lithographic samples. Our results demonstrate that self-assembly template methods are emerging as a viable, low cost route to prepare sub-micron structures.
引用
收藏
页码:339 / 349
页数:11
相关论文
共 50 条
  • [1] Self-assembly routes towards creating superconducting and magnetic arrays
    A. A. Zhukov
    E. T. Filby
    A. V. Goncharov
    M. A. Ghanem
    P. N. Bartlett
    R. Boardman
    H. Fangohr
    V. V. Metlushko
    V. Novosad
    G. Karapetrov
    P. A. J. de Groot
    Journal of Low Temperature Physics, 2005, 139 : 339 - 349
  • [2] Self-assembly Routes towards Creating Superconducting and Magnetic Arrays
    A.A. Zhukov
    E.T. Filby
    A.V. Goncharov
    M.A. Ghanem
    P.N. Bartlett
    R. Boardman
    H. Fangohr
    V.V. Metlushko
    V. Novosad
    G. Karapetrov
    P. A. J. de Groot
    Journal of Low Temperature Physics, 2005, 139 : 339 - 349
  • [3] Routes to self-assembly of nanorods
    Karthik Ramas amy
    Arunava Gupta
    Journal of Materials Research, 2013, 28 : 1761 - 1776
  • [4] Routes to self-assembly of nanorods
    Ramasamy, Karthik
    Gupta, Arunava
    JOURNAL OF MATERIALS RESEARCH, 2013, 28 (13) : 1761 - 1776
  • [5] Creating perfectly ordered quantum dot arrays via self-assembly
    Shi, Feng
    Sharma, Pradeep
    Gunaratne, Gemunu H.
    CHAOS, 2009, 19 (03)
  • [6] Programmable Stepwise Collective Magnetic Self-Assembly of Micropillar Arrays
    Park, Jeong Eun
    Park, Sei Jin
    Urbas, Augustine
    Ku, Zahyun
    Wie, Jeong Jae
    ACS NANO, 2022, 16 (02) : 3152 - 3162
  • [7] Synthesis, self-assembly and magnetic properties of FePtCu nanoparticle arrays
    Sun, XC
    Kang, SS
    Harrell, JW
    Nikles, DE
    THREE-DIMENSIONAL NANOENGINEERED ASSEMBLIES, 2003, 739 : 121 - 126
  • [8] Magnetic antidot arrays from self-assembly template methods
    Zhukov, AA
    Goncharov, AV
    de Groot, PAJ
    Bartlett, PN
    Ghanem, MA
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) : 7322 - 7324
  • [9] Magnetic antidot arrays from self-assembly template methods
    Zhukov, A.A., 1600, American Institute of Physics Inc. (93):
  • [10] Self-assembly of porphyrin arrays
    Baldini, L
    Hunter, CA
    ADVANCES IN INORGANIC CHEMISTRY, VOL 53, 2002, 53 : 213 - 259