Microstructural variations and their influence on the performance of solid oxide fuel cells based on yttrium-substituted strontium titanate ceramic anodes

被引:15
作者
Ma, Qianli [1 ]
Iwanschitz, Boris [2 ]
Dashjav, Enkhtsetseg [1 ]
Baumann, Stefan [1 ]
Sebold, Doris [1 ]
Raj, Irudayam Arul [3 ]
Mai, Andreas [2 ]
Tietz, Frank [1 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res IEK 1, D-52425 Julich, Germany
[2] Hexis AG, CH-8404 Winterthur, Switzerland
[3] Cent Electrochem Res Inst, Karaikkudi 630006, Tamil Nadu, India
关键词
Solid oxide fuel cells; Yttrium-substituted SrTiO3; Anode process; Impedance; Electrocatalyst infiltration; NB-DOPED SRTIO3; SOFC ANODES; ELECTRICAL-PROPERTIES; STABILITY; ZIRCONIA; COMPOSITES; REDUCTION; OXIDATION; LA;
D O I
10.1016/j.jpowsour.2015.01.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Donor-substituted strontium titanates have been widely recognised as alternative anode materials to the state-of-the-art Ni/YSZ cermets in solid oxide fuel cells (SOFCs). Electrolyte-supported SOFCs based on Y0.07Sr0.895TiO3 ceramic anodes with different microstructural designs were prepared. Ni or Ni with Ce0.8Gd0.2O1.9 (CGO) was infiltrated onto the pore walls within the ceramic anode framework as an electrocatalyst for anode reactions. Performances and electrochemical impedance spectroscopy measurements of the cells were analysed in detail to observe the influence of low ionic conductivity of Y0.07Sr0.895TiO3 to cell performance, to understand how to control the degradation of the cells, and to obtain a possible mechanism for the anode processes. The anode design containing both functional and current collecting layers with sufficient Ni-CGO infiltration is favourable for high power output and low performance degradation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:678 / 685
页数:8
相关论文
共 36 条
[1]   Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) oxygen transport membranes [J].
Baumann, S. ;
Schulze-Kueppers, F. ;
Roitsch, S. ;
Betz, M. ;
Zwick, M. ;
Pfaff, E. M. ;
Meulenberg, W. A. ;
Mayer, J. ;
Stoever, D. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) :102-109
[2]   The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes [J].
Cassidy, M ;
Lindsay, G ;
Kendall, K .
JOURNAL OF POWER SOURCES, 1996, 61 (1-2) :189-192
[3]   A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode [J].
Faes, Antonin ;
Hessler-Wyser, Aicha ;
Zryd, Amedee ;
Van Herle, Jan .
MEMBRANES, 2012, 2 (03) :585-664
[4]   Ceramic-based Anode Materials for Improved Redox Cycling of Solid Oxide Fuel Cells [J].
Fu, Q. X. ;
Tietz, F. .
FUEL CELLS, 2008, 8 (05) :283-293
[5]   An efficient ceramic-based anode for solid oxide fuel cells [J].
Fu, Qingxi ;
Tietz, Frank ;
Sebold, Doris ;
Tao, Shanwen ;
Irvine, John T. S. .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :663-669
[6]  
Hirschenhofer J. H., 1998, FUEL CELLS HDB, P2
[7]   Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs [J].
Holtappels, P. ;
Irvine, J. T. S. ;
Iwanschitz, B. ;
Kuhn, L. Theil ;
Lu, L. Y. ;
Ma, Q. ;
Malzbender, J. ;
Mai, A. ;
Ramos, T. ;
Rass-Hansen, J. ;
Sudireddy, B. R. ;
Tietz, F. ;
Vasechko, V. ;
Veltze, S. ;
Verbraeken, M. C. .
SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01) :1175-1184
[8]   Electrical properties of Nb-doped SrTiO3 ceramics with excess TiO2 for SOFC anodes and interconnects [J].
Horikiri, Fumimasa ;
Han, LiQun ;
Iizawa, Naofumi ;
Sato, Kazuhisa ;
Yashiro, Keiji ;
Kawada, Tatsuya ;
Mizusaki, Junichiro .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :B16-B20
[9]   Electrical properties of yttrium-doped strontium titanate under reducing conditions [J].
Hui, SQ ;
Petric, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (01) :J1-J10
[10]   Nickel-ceria infiltrated Nb-doped SrTiO3 for low temperature SOFC anodes and analysis on gas diffusion impedance [J].
Hussain, A. Mohammed ;
Hogh, Jens V. T. ;
Jacobsen, Torben ;
Bonanos, Nikolaos .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (05) :4309-4318