Independence in connected graphs

被引:16
作者
Harant, Jochen [2 ]
Rautenbach, Dieter [1 ]
机构
[1] Univ Ulm, Inst Optimierung & Operat Res, D-89069 Ulm, Germany
[2] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
关键词
Independence; Stability; Connected graph; TRIANGLE-FREE GRAPHS; NUMBER;
D O I
10.1016/j.dam.2010.08.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if G = (V-G E-G) is a finite simple and undirected graph with K components and independence number alpha(G) then there exist a positive integer k is an element of N and a function f V-G -> N-0 with non-negative integer values such that f(u) <= d(G)(u) for u is an element of V-G alpha(G) >= k >= Sigma u is an element of V-G 1/d(G)(u)+1-f(u) and Sigma u is an element of V(G)f(u)>= 2(k - k) This result is a best possible improvement of a result due to Harant and Schiermeyer [J Harant I Schiermeyer On the independence number of a graph in terms of order and size Discrete Math 232 (2001) 131-138] and implies that alpha(G)/n(G) >= 2/(d(G) + 1 + 2/n(G)) + root(d(G) + 1 + 2/n(G))(2) for connected graphs G of order n(G) average degree d(G) and independence number alpha(G) (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:79 / 86
页数:8
相关论文
共 13 条
[1]   THE LONGEST PATH IN A RANDOM GRAPH [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
COMBINATORICA, 1981, 1 (01) :1-12
[2]   A NOTE ON RAMSEY NUMBERS [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (03) :354-360
[3]  
Ajtai M., 1981, European J. Combin, V2, P1
[4]  
Caro Y., 1979, Technical Report
[5]  
Harant J., 2006, Discussiones Mathematicae Graph Theory, V26, P431, DOI 10.7151/dmgt.1335
[6]   On the independence number of a graph in terms of order and size [J].
Harant, J ;
Schiermeyer, I .
DISCRETE MATHEMATICS, 2001, 232 (1-3) :131-138
[7]   Clique is hard to approximate within n(1-epsilon) [J].
Hastad, J .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :627-636
[8]   Special issue on stability in graphs and related topics [J].
Lozin, V ;
de Werra, D .
DISCRETE APPLIED MATHEMATICS, 2003, 132 (1-3) :1-2
[9]  
SCHIERMEYER I, 1998, LECT NOTES COMPUTER, V1444, P159
[10]   A NOTE ON THE INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS [J].
SHEARER, JB .
DISCRETE MATHEMATICS, 1983, 46 (01) :83-87