Generalized synchronization of different orders of chaotic systems. with unknown parameters and parameter identification

被引:9
作者
Jia Fei-Lei [1 ]
Xu Wei [1 ]
Du Lin [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
关键词
add-order; different order; generalized synchronization; parameters identification;
D O I
10.7498/aps.56.5640
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using add-order method to translate the problem of generalized synchronization of different orders of chaotic systems into the synchronization of systems of identical order. Based on Lyapunov stability theory and adaptive control method, we give the expression of adaptive controller and the updating rule of parameters, then achieve generalized synchronization of different order of chaotic systems with unknown parameters and enable the estimation of the parameters of the drive and the response systems. This method has been applied to solve the generalized synchronization problem of hyperchaotic Lu system, Lorenz system, generalized Lorenz system, and Liu system with unknown parameters. It is proved theoretically that this method is feasible. Numerical simulations show the effectiveness of the adaptive control technique.
引用
收藏
页码:5640 / 5647
页数:8
相关论文
共 14 条
[1]   Experimental study for impulsive synchronization of a discrete chaotic system [J].
Chen, JF ;
Zhang, RY ;
Peng, JH .
ACTA PHYSICA SINICA, 2003, 52 (07) :1589-1594
[2]   Synchronization of a class of uncertain chaotic systems by observer [J].
Chen Jing ;
Zhang Tian-Ping .
ACTA PHYSICA SINICA, 2006, 55 (08) :3928-3932
[3]   Parameters identification and synchronization of chaotic systems based upon adaptive control [J].
Chen, Shihua ;
Lü, Jinhu .
Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 299 (04) :353-358
[4]  
CHEN Y, 2006, NONLINEAR ANAL, V15, P2143
[5]   Nonlinear feedback synchronization control of Liu chaotic system [J].
Chen, ZS ;
Sun, KH ;
Zhang, TS .
ACTA PHYSICA SINICA, 2005, 54 (06) :2580-2583
[6]   Adaptive synchronization of a hyperchaotic system with uncertain parameter [J].
Elabbasy, E. M. ;
Agiza, H. N. ;
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1133-1142
[7]   Phase synchronization of Rossler in two coupled harmonic oscillators [J].
Hao, JH ;
Li, W .
ACTA PHYSICA SINICA, 2005, 54 (08) :3491-3496
[8]   Reduced-order synchronization of chaotic systems with parameters unknown [J].
Ho, MC ;
Hung, YC ;
Liu, ZY ;
Jiang, IM .
PHYSICS LETTERS A, 2006, 348 (3-6) :251-259
[9]   GENERAL-APPROACH FOR CHAOTIC SYNCHRONIZATION WITH APPLICATIONS TO COMMUNICATION [J].
KOCAREV, L ;
PARLITZ, U .
PHYSICAL REVIEW LETTERS, 1995, 74 (25) :5028-5031
[10]   Generalized synchronization of two non-identical systems [J].
Li, F ;
Hu, AH ;
Xu, ZY .
ACTA PHYSICA SINICA, 2006, 55 (02) :590-597