Sensor fusion methods for high performance active vibration isolation systems

被引:26
作者
Collette, C. [1 ]
Matichard, F. [2 ,3 ]
机构
[1] Univ Libre Bruxelles, BEAMS Dept, B-1050 Brussels, Belgium
[2] MIT, Cambridge, MA 02139 USA
[3] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jsv.2015.01.006
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sensor noise often limits the performance of active vibration isolation systems. Inertial sensors used in such systems can be selected through a wide variety of instrument noise and size characteristics. However, the most sensitive instruments are often the biggest and the heaviest. Consequently, high-performance active isolators sometimes embed many tens of kilograms in instrumentation. The weight and size of instrumentation can add unwanted constraint on the design. It tends to lower the structures natural frequencies and reduces the collocation between sensors and actuators. Both effects tend to reduce feedback control performance and stability. This paper discusses sensor fusion techniques that can be used in order to increase the control bandwidth (and/or the stability). For this, the low noise inertial instrument signal dominates the fusion at low frequency to provide vibration isolation. Other types of sensors (relative motion, smaller but noisier inertial, or force sensors) are used at higher frequencies to increase stability. Several sensor fusion configurations are studied. The paper shows the improvement that can be expected for several case studies including a rigid equipment, a flexible equipment, and a flexible equipment mounted on a flexible support structure. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 21 条
[1]   LIGO: the Laser Interferometer Gravitational-Wave Observatory [J].
Abbott, B. P. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballmer, S. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Behnke, B. ;
Benacquista, M. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, J. K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Bridges, D. O. .
REPORTS ON PROGRESS IN PHYSICS, 2009, 72 (07)
[2]   Two-sensor control in active vibration isolation using hard mounts [J].
Beijen, Michiel A. ;
Tjepkema, Dirk ;
van Dijk, Johannes .
CONTROL ENGINEERING PRACTICE, 2014, 26 :82-90
[3]   Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement [J].
Collette, C. ;
Janssens, S. ;
Fernandez-Carmona, P. ;
Artoos, K. ;
Guinchard, M. ;
Hauviller, C. ;
Preumont, A. .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2012, 102 (04) :1289-1300
[4]   Nano-motion control of heavy quadrupoles for future particle colliders: An experimental validation [J].
Collette, C. ;
Janssens, S. ;
Artoos, K. ;
Kuzmin, A. ;
Fernandez-Carmona, P. ;
Guinchard, M. ;
Leuxe, R. ;
Hauviller, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 643 (01) :95-101
[5]  
Fleming FM., 1990, THESIS MIT CAMBRIDGE
[6]  
Frahm H, 1909, Improved means for damping the vibrations of bodies, Patent No. [GB190923829A, 190923829]
[7]   BASIC RELATIONS FOR CONTROL OF FLEXIBLE VEHICLES [J].
GEVARTER, WB .
AIAA JOURNAL, 1970, 8 (04) :666-&
[8]   ON THE STABILITY PROBLEM CAUSED BY FINITE ACTUATOR DYNAMICS IN THE COLLOCATED CONTROL OF LARGE SPACE STRUCTURES [J].
GOH, CJ ;
CAUGHEY, TK .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (03) :787-802
[9]   Sensors and control of a space-based six-axis vibration isolation system [J].
Hauge, GS ;
Campbell, ME .
JOURNAL OF SOUND AND VIBRATION, 2004, 269 (3-5) :913-931
[10]  
Hua W., 2005, THESIS STANFORD U