Quantitative multi-image analysis for biomedical Raman spectroscopic imaging

被引:26
|
作者
Hedegaard, Martin A. B. [1 ]
Bergholt, Mads S. [2 ,3 ]
Stevens, Molly M. [2 ,3 ]
机构
[1] Univ Southern Denmark, Dept Chem Engn Biotechnol & Environm Technol, Campusvej 55, DK-5230 Odense M, Denmark
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mat, Dept Bioengn, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
Raman spectroscopic imaging; multi-image analysis; biochemical quantification; MULTIPLICATIVE SIGNAL CORRECTION; HYPERSPECTRAL DATA; TUMORS; MICROSPECTROSCOPY; FLUORESCENCE; SUBTRACTION; MICROSCOPY; SCATTERING; ALGORITHM; SPECTRA;
D O I
10.1002/jbio.201500238
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Imaging by Raman spectroscopy enables unparalleled label-free insights into cell and tissue composition at the molecular level. With established approaches limited to single image analysis, there are currently no general guidelines or consensus on how to quantify biochemical components across multiple Raman images. Here, we describe a broadly applicable methodology for the combination of multiple Raman images into a single image for analysis. This is achieved by removing image specific background interference, unfolding the series of Raman images into a single dataset, and normalisation of each Raman spectrum to render comparable Raman images. Multivariate image analysis is finally applied to derive the contributing 'pure' biochemical spectra for relative quantification. We present our methodology using four independently measured Raman images of control cells and four images of cells treated with strontium ions from substituted bioactive glass. We show that the relative biochemical distribution per area of the cells can be quantified. In addition, using k-means clustering, we are able to discriminate between the two cell types over multiple Raman images. This study shows a streamlined quantitative multi-image analysis tool for improving cell/tissue characterisation and opens new avenues in biomedical Raman spectroscopic imaging.
引用
收藏
页码:542 / 550
页数:9
相关论文
共 50 条
  • [31] DehazeGS: 3D Gaussian Splatting for Multi-Image Haze Removal
    Ma, Chenjun
    Zhao, Jieyu
    Chen, Jian
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 736 - 740
  • [32] Robust, globally consistent and fully automatic multi-image registration and montage synthesis for 3-D multi-channel images
    Tsai, C-L
    Lister, J. P.
    Bjornsson, C. S.
    Smith, K.
    Shain, W.
    Barnes, C. A.
    Roysam, B.
    JOURNAL OF MICROSCOPY, 2011, 243 (02) : 154 - 171
  • [33] Quantitative Analysis of 4 x 4 Mueller Matrix Transformation Parameters for Biomedical Imaging
    Sheng, Wei
    Li, Weipeng
    Qi, Ji
    Liu, Teng
    He, Honghui
    Dong, Yang
    Liu, Shaoxiong
    Wu, Jian
    Elson, Daniel S.
    Ma, Hui
    PHOTONICS, 2019, 6 (01)
  • [34] Nanoparticle-based surface enhanced Raman spectroscopic imaging of biological arrays
    Nsiah, Francis
    McDermott, Mark T. T.
    DALTON TRANSACTIONS, 2023, 52 (06) : 1657 - 1670
  • [35] Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells
    Bielecki, Christiane
    Bocklitz, Thomas W.
    Schmitt, Michael
    Krafft, Christoph
    Marquardt, Claudio
    Gharbi, Akram
    Knoesel, Thomas
    Stallmach, Andreas
    Popp, Juergen
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (07)
  • [36] Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging
    Neugebauer, Ute
    Clement, Joachim H.
    Bocklitz, Thomas
    Krafft, Christoph
    Popp, Juergen
    JOURNAL OF BIOPHOTONICS, 2010, 3 (8-9) : 579 - 587
  • [37] Comparative two- and three-dimensional analysis of nanoparticle localization in different cell types by Raman spectroscopic imaging
    Braeutigam, Katharina
    Bocklitz, Thomas
    Silge, Anja
    Dierker, Christian
    Ossig, Rainer
    Schnekenburger, Juergen
    Cialla, Dana
    Roesch, Petra
    Popp, Juergen
    JOURNAL OF MOLECULAR STRUCTURE, 2014, 1073 : 44 - 50
  • [38] Asymmetric encryption of multi-image based on compressed sensing and feature fusion with high quality image reconstruction
    Chen, Xu-Dong
    Liu, Qi
    Wang, Jun
    Wang, Qiong-Hua
    OPTICS AND LASER TECHNOLOGY, 2018, 107 : 302 - 312
  • [39] A benchtop, ultrafast infrared spectroscopic imaging system for biomedical applications
    Amrania, Hemmel
    McCrow, Andrew
    Phillips, Chris
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (12):
  • [40] Morphology of InN nanorods using spectroscopic Raman imaging
    Madapu, Kishore K.
    Ku, N. R.
    Dhara, S.
    Liu, C. P.
    Tyagi, A. K.
    JOURNAL OF RAMAN SPECTROSCOPY, 2013, 44 (05) : 791 - 794