Quantitative multi-image analysis for biomedical Raman spectroscopic imaging

被引:26
|
作者
Hedegaard, Martin A. B. [1 ]
Bergholt, Mads S. [2 ,3 ]
Stevens, Molly M. [2 ,3 ]
机构
[1] Univ Southern Denmark, Dept Chem Engn Biotechnol & Environm Technol, Campusvej 55, DK-5230 Odense M, Denmark
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mat, Dept Bioengn, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
Raman spectroscopic imaging; multi-image analysis; biochemical quantification; MULTIPLICATIVE SIGNAL CORRECTION; HYPERSPECTRAL DATA; TUMORS; MICROSPECTROSCOPY; FLUORESCENCE; SUBTRACTION; MICROSCOPY; SCATTERING; ALGORITHM; SPECTRA;
D O I
10.1002/jbio.201500238
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Imaging by Raman spectroscopy enables unparalleled label-free insights into cell and tissue composition at the molecular level. With established approaches limited to single image analysis, there are currently no general guidelines or consensus on how to quantify biochemical components across multiple Raman images. Here, we describe a broadly applicable methodology for the combination of multiple Raman images into a single image for analysis. This is achieved by removing image specific background interference, unfolding the series of Raman images into a single dataset, and normalisation of each Raman spectrum to render comparable Raman images. Multivariate image analysis is finally applied to derive the contributing 'pure' biochemical spectra for relative quantification. We present our methodology using four independently measured Raman images of control cells and four images of cells treated with strontium ions from substituted bioactive glass. We show that the relative biochemical distribution per area of the cells can be quantified. In addition, using k-means clustering, we are able to discriminate between the two cell types over multiple Raman images. This study shows a streamlined quantitative multi-image analysis tool for improving cell/tissue characterisation and opens new avenues in biomedical Raman spectroscopic imaging.
引用
收藏
页码:542 / 550
页数:9
相关论文
共 50 条
  • [21] Biomedical instrumentation of photoacoustic imaging and quantitative sensing for clinical applications
    Khan, S.
    Vasudevan, S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (09):
  • [22] Biomedical Imaging by Means of Linear and Non-Linear Raman Microspectroscopy
    Vogler, N.
    Meyer, T.
    Latka, I.
    Bocklitz, T.
    Krafft, Ch.
    Deckert, V.
    Bendsoe, N.
    Svanberg, K.
    Dietzek, B.
    Popp, J.
    BIOPHOTONICS: PHOTONIC SOLUTIONS FOR BETTER HEALTH CARE II, 2010, 7715
  • [23] An asymmetric multi-image cryptosystem based on cylindrical diffraction and phase truncation
    Hu, Ke-Ya
    Wu, Chao
    Wang, Ying
    Wang, Jun
    Wang, Qiong-Hua
    OPTICS COMMUNICATIONS, 2019, 449 : 100 - 109
  • [24] Detailed spectroscopic analysis of complex multi-component materials using a combination of Raman mapping with BTEM
    Widjaja, Effendi
    Garland, Marc
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (07) : 828 - 833
  • [25] Fundamental developments in infrared spectroscopic imaging for biomedical applications
    Pilling, Michael
    Gardner, Peter
    CHEMICAL SOCIETY REVIEWS, 2016, 45 (07) : 1935 - 1957
  • [26] Raman spectroscopic analysis of cataract lens: A compendious review
    Huang, Chia-Chi
    Chen, Wenlung
    APPLIED SPECTROSCOPY REVIEWS, 2018, 53 (09) : 689 - 702
  • [27] Raman spectroscopic analysis of a belltower commemorative wall decoration
    Fernandes, R. F.
    de Oliveira, L. F. C.
    Edwards, H. G. M.
    Brooke, C. J.
    Pepper, M.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (02):
  • [28] Noise-robust pixel-super-resolved multi-image phase retrieval with coherent illumination
    Shen, Cheng
    Guo, Cheng
    Geng, Yong
    Tan, Jiubin
    Liu, Shutian
    Liu, Zhengjun
    JOURNAL OF OPTICS, 2018, 20 (11)
  • [29] Comparing Methods for Analysis of Biomedical Hyperspectral Image Data
    Leavesley, Silas J.
    Sweat, Brenner
    Abbott, Caitlyn
    Favreau, Peter F.
    Annamdevula, Naga S.
    Rich, Thomas C.
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XV, 2017, 10068
  • [30] Cross-plane multi-image encryption using chaos and blurred pixels
    Wang, Xingyuan
    Liu, Huipeng
    CHAOS SOLITONS & FRACTALS, 2022, 164