Coindex and Rigidity of Einstein Metrics on Homogeneous Gray Manifolds

被引:2
|
作者
Schwahn, Paul [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, Inst Geometrie & Topol, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Einstein metrics; Stability; Rigidity; Lichnerowicz Laplacian; Nearly Kahler;
D O I
10.1007/s12220-022-01061-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any 6-dimensional strict nearly Kahler manifold is Einstein with positive scalar curvature. We compute the coindex of the metric with respect to the Einstein-Hilbert functional on each of the compact homogeneous examples. Moreover, we show that the infinitesimal Einstein deformations on F-1,F-2 = SU(3)/T-2 are not integrable into a curve of Einstein metrics.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] STANDARD HOMOGENEOUS EINSTEIN MANIFOLDS
    RODIONOV, ED
    DOKLADY AKADEMII NAUK, 1993, 328 (02) : 147 - 149
  • [42] ON THE STABILITY OF HOMOGENEOUS EINSTEIN MANIFOLDS
    Lauret, Jorge
    ASIAN JOURNAL OF MATHEMATICS, 2022, 26 (04) : 555 - 584
  • [43] A Class of Homogeneous Einstein Manifolds*
    Yifang Kang
    Ke Liang
    Chinese Annals of Mathematics, Series B, 2006, 27 : 411 - 418
  • [44] SINGULARITY OF HOMOGENEOUS EINSTEIN METRICS
    PERESETSKII, AA
    MATHEMATICAL NOTES, 1977, 21 (1-2) : 39 - 45
  • [45] ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS
    WANG, MY
    ZILLER, W
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1985, 18 (04): : 563 - 633
  • [46] Homogeneous Einstein metrics and butterflies
    Boehm, Christoph
    Kerr, Megan M.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (04)
  • [47] SURVEY: HOMOGENEOUS EINSTEIN MANIFOLDS
    Jablonski, Michael
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 64 (01): : 461 - 485
  • [48] Homogeneous Einstein metrics and butterflies
    Christoph Böhm
    Megan M. Kerr
    Annals of Global Analysis and Geometry, 2023, 63
  • [49] ON HOMOGENEOUS SQUARE EINSTEIN METRICS
    Deng, Shaoqiang
    Liu, Xingda
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) : 967 - 973
  • [50] Invariant (α, β)-metrics on homogeneous manifolds
    An, Huihui
    Deng, Shaoqiang
    MONATSHEFTE FUR MATHEMATIK, 2008, 154 (02): : 89 - 102