Coindex and Rigidity of Einstein Metrics on Homogeneous Gray Manifolds

被引:2
|
作者
Schwahn, Paul [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, Inst Geometrie & Topol, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Einstein metrics; Stability; Rigidity; Lichnerowicz Laplacian; Nearly Kahler;
D O I
10.1007/s12220-022-01061-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any 6-dimensional strict nearly Kahler manifold is Einstein with positive scalar curvature. We compute the coindex of the metric with respect to the Einstein-Hilbert functional on each of the compact homogeneous examples. Moreover, we show that the infinitesimal Einstein deformations on F-1,F-2 = SU(3)/T-2 are not integrable into a curve of Einstein metrics.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Coindex and Rigidity of Einstein Metrics on Homogeneous Gray Manifolds
    Paul Schwahn
    The Journal of Geometric Analysis, 2022, 32
  • [2] Einstein metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Chen, Chao
    Chen, Zhiqi
    Hu, Yuwang
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [3] Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Kang, Yifang
    Chen, Zhiqi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 : 86 - 91
  • [4] New homogeneous Einstein metrics on Stiefel manifolds
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 2 - 18
  • [5] Para-Kahler Einstein metrics on homogeneous manifolds
    Alekseevsky, Dimitri V.
    Medori, Costantino
    Tomassini, Adriano
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (1-2) : 69 - 72
  • [6] New homogeneous Einstein metrics on quaternionic Stiefel manifolds
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    ADVANCES IN GEOMETRY, 2018, 18 (04) : 509 - 524
  • [7] Einstein-Randers metrics on some homogeneous manifolds
    Chen, Zhiqi
    Deng, Shaoqiang
    Liang, Ke
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 : 114 - 120
  • [8] Non-naturally reductive Einstein metrics on normal homogeneous Einstein manifolds
    Yan, Zaili
    Deng, Shaoqiang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (08)
  • [9] The Ricci flow approach to homogeneous Einstein metrics on flag manifolds
    Anastassiou, Stavros
    Chrysikos, Ioannis
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) : 1587 - 1600
  • [10] Homogeneous Einstein-Randers metrics on some Stiefel manifolds
    Tan, Ju
    Xu, Na
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 131 : 182 - 188