Lagrangian formulation for free mixed-symmetry bosonic gauge fields in (A) dSd -: art. no. 069

被引:0
作者
Alkalaev, KB [1 ]
Shaynkman, OV [1 ]
Vasiliev, MA [1 ]
机构
[1] PN Lebedev Phys Inst, IE Tamm Theoret Dept, Moscow 119991, Russia
关键词
field theories in higher dimensions; global symmetries; space-time symmetries; gauge symmetry;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Covariant lagrangian formulation for free bosonic massless fields of arbitrary mixed-symmetry type in ( A) dS(d) space-time is presented. The analysis is based on the frame-like formulation of higher-spin field dynamics [ 1] with higher-spin fields described as p-forms taking values in appropriate modules of the ( A) dSd algebra. The problem of finding free field action is reduced to the analysis of an appropriate differential complex, with the derivation Q associated with the variation of the action. The constructed action exhibits additional gauge symmetries in the flat limit in agreement with the general structure of gauge symmetries for mixed-symmetry fields in Minkowski and (A) dSd spaces.
引用
收藏
页数:18
相关论文
共 42 条
[1]   Two-column higher-spin massless fields in AdSd space [J].
Alkalaev, KB .
THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 140 (03) :1253-1263
[2]   On the frame-like formulation of mixed-symmetry massless fields in (A)dSd [J].
Alkalaev, KB ;
Shaynkman, OV ;
Vasiliev, MA .
NUCLEAR PHYSICS B, 2004, 692 (03) :363-393
[3]   Free fermionic higher spin fields in AdS5 [J].
Alkalaev, KB .
PHYSICS LETTERS B, 2001, 519 (1-2) :121-128
[4]  
ALKALAEV KB, UNPUB
[5]   HIGHER SPIN VIERBEIN GAUGE FERMIONS AND HYPERGRAVITIES [J].
ARAGONE, C ;
DESER, S .
NUCLEAR PHYSICS B, 1980, 170 (02) :329-352
[6]   HIGHER SPIN FIELDS WITH MIXED SYMMETRY [J].
AULAKH, CS ;
KOH, IG ;
OUVRY, S .
PHYSICS LETTERS B, 1986, 173 (03) :284-288
[7]   On geometric equations and duality for free higher spins [J].
Bekaert, X ;
Boulanger, N .
PHYSICS LETTERS B, 2003, 561 (1-2) :183-190
[8]   Tensor gauge fields in arbitrary representations of GL(D,R).: Duality and Poincare lemma [J].
Bekaert, X ;
Boulanger, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 245 (01) :27-67
[9]   Radial dimensional reduction: (anti) de Sitter theories from flat [J].
Biswas, T ;
Siegel, W .
JOURNAL OF HIGH ENERGY PHYSICS, 2002, (07) :153-181
[10]   How massless are massless fields in AdSd [J].
Brink, L ;
Metsaev, RR ;
Vasiliev, MA .
NUCLEAR PHYSICS B, 2000, 586 (1-2) :183-205