Off-equatorial effects of the nonlinear interaction of VLF chorus waves with radiation belt electrons

被引:2
作者
Foster, John C. [1 ]
Erickson, Philip J. [1 ]
机构
[1] Massachusetts Inst Technol Haystack Observ, Westford, MA 01886 USA
来源
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES | 2022年 / 9卷
关键词
nonlinear processes. wave-particle interactions; VLF chorus; electron acceleration; nonlinear inhomogeneity factor; radiation belt electrons; HIGHLY RELATIVISTIC ELECTRONS; ALLEN PROBES OBSERVATIONS; WHISTLER-MODE WAVES; LOWER-BAND; ACCELERATION; GENERATION;
D O I
10.3389/fspas.2022.986814
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Nonlinear processes are involved in both the growth of VLF chorus waves and the energization of radiation belt electrons trapped in the wave potential. Nonlinear theory has led to analytic formulae describing both these processes. To investigate these processes, observations from the Van Allen Probes twin spacecraft provide simultaneous in situ information on VLF chorus waves, radiation belt and injected electrons, and local plasma parameters. We combine the theoretical treatment summarized by Omura (2021) with these in situ observations to investigate the characteristics and effects of nonlinear radiation belt processes at the off-equatorial location of the spacecraft observations. We show the smooth phase transition between initial subpackets of chorus wave elements, conducive to extended trapping and enhancement of resonant electrons. The structure of the chorus wave element changes as it propagates away from the equator. Frequency dispersion due to the variation of parallel wave group velocity with frequency contributes to the chorus waveform frequency sweep rate observed at an off-equatorial location. Nonlinear damping at the local value of 1/2 f(ce) progressively erodes wave amplitude at frequencies above 1/2 f(ceEQ). We examine the important dependencies of the nonlinear inhomogeneity factor on the time rate of change of the wave frequency and the field-aligned gradient of the magnetic field and discuss their implication for the energization of trapped non-relativistic and MeV electrons. The 0.5-2% energy gain we find for 3-6 MeV seed electrons indicates that prompt local acceleration of highly relativistic and ultra-relativistic radiation belt electrons can take place directly through their nonlinear interaction with an individual VLF chorus wave element.
引用
收藏
页数:16
相关论文
共 37 条
  • [1] Non-diffusive resonant acceleration of electrons in the radiation belts
    Artemyev, A. V.
    Krasnoselskikh, V. V.
    Agapitov, O. V.
    Mourenas, D.
    Rolland, G.
    [J]. PHYSICS OF PLASMAS, 2012, 19 (12)
  • [2] Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations
    Baker, D. N.
    Jaynes, A. N.
    Li, X.
    Henderson, M. G.
    Kanekal, S. G.
    Reeves, G. D.
    Spence, H. E.
    Claudepierre, S. G.
    Fennell, J. F.
    Hudson, M. K.
    Thorne, R. M.
    Foster, J. C.
    Erickson, P. J.
    Malaspina, D. M.
    Wygant, J. R.
    Boyd, A.
    Kletzing, C. A.
    Drozdov, A.
    Shprits, Y. Y.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (05) : 1351 - 1358
  • [3] The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth's Radiation Belt High-Energy Particle Populations
    Baker, D. N.
    Kanekal, S. G.
    Hoxie, V. C.
    Batiste, S.
    Bolton, M.
    Li, X.
    Elkington, S. R.
    Monk, S.
    Reukauf, R.
    Steg, S.
    Westfall, J.
    Belting, C.
    Bolton, B.
    Braun, D.
    Cervelli, B.
    Hubbell, K.
    Kien, M.
    Knappmiller, S.
    Wade, S.
    Lamprecht, B.
    Stevens, K.
    Wallace, J.
    Yehle, A.
    Spence, H. E.
    Friedel, R.
    [J]. SPACE SCIENCE REVIEWS, 2013, 179 (1-4) : 337 - 381
  • [4] The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
    Blake, J. B.
    Carranza, P. A.
    Claudepierre, S. G.
    Clemmons, J. H.
    Crain, W. R., Jr.
    Dotan, Y.
    Fennell, J. F.
    Fuentes, F. H.
    Galvan, R. M.
    George, J. S.
    Henderson, M. G.
    Lalic, M.
    Lin, A. Y.
    Looper, M. D.
    Mabry, D. J.
    Mazur, J. E.
    McCarthy, B.
    Nguyen, C. Q.
    O'Brien, T. P.
    Perez, M. A.
    Redding, M. T.
    Roeder, J. L.
    Salvaggio, D. J.
    Sorensen, G. A.
    Spence, H. E.
    Yi, S.
    Zakrzewski, M. P.
    [J]. SPACE SCIENCE REVIEWS, 2013, 179 (1-4) : 383 - 421
  • [5] Phase space density distributions of energetic electrons in the outer radiation belt during two Geospace Environment Modeling Inner Magnetosphere/Storms selected storms
    Chen, Y.
    Friedel, R. H. W.
    Reeves, G. D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A11)
  • [6] Demekhov AG, 2006, GEOMAGN AERONOMY+, V46, P711, DOI 10.1134/s0016793206060053
  • [7] Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus
    Foster, J. C.
    Erickson, P. J.
    Omura, Y.
    Baker, D. N.
    Kletzing, C. A.
    Claudepierre, S. G.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (01) : 324 - 339
  • [8] Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations
    Foster, J. C.
    Erickson, P. J.
    Baker, D. N.
    Claudepierre, S. G.
    Kletzing, C. A.
    Kurth, W.
    Reeves, G. D.
    Thaller, S. A.
    Spence, H. E.
    Shprits, Y. Y.
    Wygant, J. R.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (01) : 20 - 25
  • [9] MAGNETOSPHERIC CONDITIONS AT TIME OF ENHANCED WAVE-PARTICLE INTERACTIONS NEAR PLASMAPAUSE
    FOSTER, JC
    ROSENBERG, TJ
    LANZEROTTI, LJ
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1976, 81 (13): : 2175 - 2182
  • [10] Subpacket structure in strong VLF chorus rising tones: characteristics and consequences for relativistic electron acceleration
    Foster, John C.
    Erickson, Philip J.
    Omura, Yoshiharu
    [J]. EARTH PLANETS AND SPACE, 2021, 73 (01):