Normal basis of the finite field F(2(p-1)pm) over F-2

被引:1
作者
Wang, MZ [1 ]
Blake, IF [1 ]
机构
[1] UNIV WATERLOO, DEPT ELECT & COMP ENGN, WATERLOO, ON N2L 3G1, CANADA
关键词
finite-field arithmetic; normal bases; dual bases;
D O I
10.1109/18.556132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The determination of normal bases for finite fields, particularly over the finite field IF2, is of importance in applications such as coding and cryptography. This correspondence gives an explicit normal basis for a finite field IF(2(p-1)p)m over IF2, when 2 is a primitive element module p(2). In the case when p=3, an explicit dual basis is also obtained.
引用
收藏
页码:737 / 739
页数:3
相关论文
共 14 条
[1]   LOW COMPLEXITY NORMAL BASES [J].
ASH, DW ;
BLAKE, IF ;
VANSTONE, SA .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) :191-210
[2]   AN INCREASE IN NORMAL BASIS THEOREMS [J].
BLESSENOHL, D ;
JOHNSEN, K .
JOURNAL OF ALGEBRA, 1986, 103 (01) :141-159
[3]  
Burton David M, 1976, ELEMENTARY NUMBER TH
[4]  
HACHENBERGER D, 1994, DESIGN CODE CRYPTOGR, V4, P129
[5]  
LENSTRA HW, 1987, MATH COMPUT, V48, P217, DOI 10.1090/S0025-5718-1987-0866111-3
[6]  
Lidl R., 1994, INTRO FINITE FIELDS
[7]  
Menezes A. J., 1993, APPL FINITE FIELDS
[8]  
Mullin R.C., 1988, US Patent, Patent No. 4745568
[9]  
Omura J.K., 1986, U.S. Patent, Patent No. [US 4,587,627, 4587627]
[10]  
PEI DY, 1986, IEEE T INFORM THEORY, V32, P285