The multiple gamma function and its application to computation of series

被引:38
作者
Adamchik, VS [1 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
关键词
multiple gamma function; Barnes function; gamma function; Riemann zeta function; Hurwitz zeta function; Stirling numbers; Stieltjes constants; Catalan's constant; harmonic numbers; Glaisher's constant;
D O I
10.1007/s11139-005-1868-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multiple gamma function Gamma(n), defined by a recurrence-functional equation as a generalization of the Euler gamma function, was originally introduced by Kinkelin, Glaisher, and Barnes around 1900. Today, due to the pioneer work of Conrey, Katz and Sarnak, interest in the multiple gamma function has been revived. This paper discusses some theoretical aspects of the Gamma(n) function and their applications to summation of series and infinite products.
引用
收藏
页码:271 / 288
页数:18
相关论文
共 19 条
[1]  
[Anonymous], 1998, Analysis, DOI DOI 10.1524/ANLY.1998.18.2.131
[2]  
APOSTOL TM, 1985, MATH COMPUT, V44, P223, DOI 10.1090/S0025-5718-1985-0771044-5
[3]   On the generalised gamma function [J].
Bendersky, L .
ACTA MATHEMATICA, 1933, 61 (01) :263-322
[4]  
Berndt B.C., 1985, Ramanujan's Notebooks: Part 1, P135
[5]   AN INTERESTING INFINITE PRODUCT [J].
BORWEIN, P ;
DYKSHOORN, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (01) :203-207
[6]   Multiple Gamma and related functions [J].
Choi, J ;
Srivastava, HM ;
Adamchik, VS .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) :515-533
[7]  
DILCHER K, 1994, AEQUATIONES MATH, V179, P55
[8]   On some integrals involving the Hurwitz zeta function: Part 1 [J].
Espinosa, O ;
Moll, VH .
RAMANUJAN JOURNAL, 2002, 6 (02) :159-188
[9]   Random Matrix Theory and ζ(1/2+it) [J].
Keating, JP ;
Snaith, NC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :57-89
[10]   Random matrix theory and L-functions at s=1/2 [J].
Keating, JP ;
Snaith, NC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :91-110