Searching for isotropic stochastic gravitational-wave background in the international pulsar timing array second data release

被引:37
|
作者
Chen, Zu-Cheng [1 ,2 ,3 ,4 ]
Wu, Yu-Mei [1 ,2 ]
Huang, Qing-Guo [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China
[4] Beijing Normal Univ, Adv Inst Nat Sci, Zhuhai 519087, Peoples R China
[5] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
关键词
stochastic gravitational-wave background; pulsar timing array; beyond general relativity; HOLE BINARY-SYSTEMS; RADIATION; PACKAGE; TEMPO2; LIMITS; PROBE;
D O I
10.1088/1572-9494/ac7cdf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We search for isotropic stochastic gravitational-wave background (SGWB) in the International Pulsar Timing Array second data release. By modeling the SGWB as a power-law, we find very strong Bayesian evidence for a common-spectrum process, and further this process has scalar transverse (ST) correlations allowed in general metric theory of gravity as the Bayes factor in favor of the ST-correlated process versus the spatially uncorrelated common-spectrum process is 30 +/- 2. The median and the 90% equal-tail amplitudes of ST mode are A(ST) = 1.29(-0.44)(+0.51) x 10(-15), or equivalently the energy density parameter per logarithm frequency is Omega(ST)(GW) = 2.31(-1.30)(+2.19) x 10(-9), at frequency of 1 year(-1). However, we do not find any statistically significant evidence for the tensor transverse (TT) mode and then place the 95% upper limits as A(TT) < 3.95 x 10(-15), or equivalently Omega(TT)(GW) < 2.16 x 10(-9), at frequency of 1 year(-1).
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Chirality of the gravitational-wave background and pulsar-timing arrays
    Belgacem, Enis
    Kamionkowski, Marc
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [32] On measuring the gravitational-wave background using Pulsar Timing Arrays
    van Haasteren, Rutger
    Levin, Yuri
    McDonald, Patrick
    Lu, Tingting
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 395 (02) : 1005 - 1014
  • [33] Searching for gravitational-wave bursts from cosmic string cusps with the Parkes Pulsar Timing Array
    Yonemaru, N.
    Kuroyanagi, S.
    Hobbs, G.
    Takahashi, K.
    Zhu, X-J
    Coles, W. A.
    Dai, S.
    Howard, E.
    Manchester, R.
    Reardon, D.
    Russell, C.
    Shannon, R. M.
    Thyagarajan, N.
    Spiewak, R.
    Wang, J-B
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 501 (01) : 701 - 712
  • [34] Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection
    Pol, Nihan S.
    Taylor, Stephen R.
    Zoltan Kelley, Luke
    Vigeland, Sarah J.
    Simon, Joseph
    Chen, Siyuan
    Arzoumanian, Zaven
    Baker, Paul T.
    Becsy, Bence
    Brazier, Adam
    Brook, Paul R.
    Burke-Spolaor, Sarah
    Chatterjee, Shami
    Cordes, James M.
    Cornish, Neil J.
    Crawford, Fronefield
    Thankful Cromartie, H.
    DeCesar, Megan E.
    Demorest, Paul B.
    Dolch, Timothy
    Ferrara, Elizabeth C.
    Fiore, William
    Fonseca, Emmanuel
    Garver-Daniels, Nathan
    Good, Deborah C.
    Hazboun, Jeffrey S.
    Jennings, Ross J.
    Jones, Megan L.
    Kaiser, Andrew R.
    Kaplan, David L.
    Shapiro Key, Joey
    Lam, Michael T.
    Lazio, T. Joseph W.
    Luo, Jing
    Lynch, Ryan S.
    Madison, Dustin R.
    McEwen, Alexander
    McLaughlin, Maura A.
    Mingarelli, Chiara M. F.
    Ng, Cherry
    Nice, David J.
    Pennucci, Timothy T.
    Ransom, Scott M.
    Ray, Paul S.
    Shapiro-Albert, Brent J.
    Siemens, Xavier
    Stairs, Ingrid H.
    Stinebring, Daniel R.
    Swiggum, Joseph K.
    Vallisneri, Michele
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 911 (02)
  • [35] Proving the short-wavelength approximation in Pulsar Timing Array gravitational-wave background searches
    Mingarelli, Chiara M. F.
    Mingarelli, Angelo B.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (10):
  • [36] Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays
    Taylor, Stephen R.
    Gair, Jonathan R.
    PHYSICAL REVIEW D, 2013, 88 (08):
  • [37] Pulsar and cosmic variances of pulsar timing-array correlation measurements of the stochastic gravitational wave background
    Bernardo, Reginald Christian
    Ng, Kin-Wang
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (11):
  • [38] Optimal strategies for gravitational wave stochastic background searches in pulsar timing data
    Anholm, Melissa
    Ballmer, Stefan
    Creighton, Jolien D. E.
    Price, Larry R.
    Siemens, Xavier
    PHYSICAL REVIEW D, 2009, 79 (08):
  • [39] Bayesian cross validation for gravitational-wave searches in pulsar-timing array data
    Wang, Haochen
    Taylor, Stephen R.
    Vallisneri, Michele
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (03) : 3644 - 3649
  • [40] COSMIC GRAVITATIONAL-WAVE BACKGROUND - LIMITS FROM MILLISECOND PULSAR TIMING
    STINEBRING, DR
    RYBA, MF
    TAYLOR, JH
    PHYSICAL REVIEW LETTERS, 1990, 65 (03) : 285 - 288