Girth of {C3, ... , Cs}-free extremal graphs

被引:1
作者
Abajo, E. [1 ]
Balbuena, C. [2 ]
Dianez, A. [1 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 1, E-41012 Seville, Spain
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
关键词
Extremal graph; Extremal function; Girth; Degree of an edge; MOORE GRAPHS; CYCLES; SIZE;
D O I
10.1016/j.dam.2012.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a {C-3,C- ... , C-s}-free graph with as many edges as possible. In this paper we consider a question studied by several authors, the compulsory existence of the cycle Cs+1 in G. The answer has already been proved to be affirmative for s = 3.4. 5, 6. In this work we show that the girth of G is g(G) = s + 1 when the order of G is at least 1 + s(s-2/2)(s-2) -4/s-4 if s is even, 1 + (s-1)(3)((s-2)(2) - 1/4) (s-3/2) -8s/2(s-2)(2) - 10 if s is odd. This bound is an improvement of the best general result so far known. Moreover, we also prove in the case s = 7 that the girth is g(G) = 8 for order at least 14 and characterize all the extremal graphs whose girth is not 8. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1311 / 1318
页数:8
相关论文
共 22 条
[11]  
Buekenhout F., 1995, Handbook of Incidence Geometry
[12]  
Chartrand G., 1996, Graphs & Digraphs, V3rd
[13]  
DAMERELL RM, 1973, P CAMB PHILOS SOC, V74, P227
[14]  
Feit W., 1964, Journal of Algebra, V1, P114
[15]  
Garnick D. K., 1992, J. Combin. Math. Combin. Comp., V12, P33
[16]   EXTREMAL GRAPHS WITHOUT 3-CYCLES OR 4-CYCLES [J].
GARNICK, DK ;
KWONG, YHH ;
LAZEBNIK, F .
JOURNAL OF GRAPH THEORY, 1993, 17 (05) :633-645
[17]   ON MOORE GRAPHS WITH DIAMETER-2 AND DIAMETER-3 [J].
HOFFMAN, AJ ;
SINGLETON, RR .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (05) :497-504
[18]  
Lazebnik F, 1997, J GRAPH THEOR, V26, P147, DOI 10.1002/(SICI)1097-0118(199711)26:3<147::AID-JGT5>3.0.CO
[19]  
2-R
[20]   Calculating the extremal number ex(υ; {C3, C4, ... , Cn}) [J].
Tang, Jianmin ;
Lin, Yuqing ;
Balbuena, Camino ;
Miller, Mirka .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (09) :2198-2206