M3D-RPN: Monocular 3D Region Proposal Network for Object Detection

被引:392
作者
Brazil, Garrick [1 ]
Liu, Xiaoming [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019) | 2019年
关键词
D O I
10.1109/ICCV.2019.00938
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding the world in 3D is a critical component of urban autonomous driving. Generally, the combination of expensive LiDAR sensors and stereo RGB imaging has been paramount for successful 3D object detection algorithms, whereas monocular image-only methods experience drastically reduced performance. We propose to reduce the gap by reformulating the monocular 3D detection problem as a standalone 3D region proposal network. We leverage the geometric relationship of 2D and 3D perspectives, allowing 3D boxes to utilize well-known and powerful convolutional features generated in the image-space. To help address the strenuous 3D parameter estimations, we further design depth-aware convolutional layers which enable location specific feature development and in consequence improved 3D scene understanding. Compared to prior work in monocular 3D detection, our method consists of only the proposed 3D region proposal network rather than relying on external networks, data, or multiple stages. M3D-RPN is able to significantly improve the performance of both monocular 3D Object Detection and Bird's Eye View tasks within the KITTI urban autonomous driving dataset, while efficiently using a shared multi-class model.
引用
收藏
页码:9286 / 9295
页数:10
相关论文
共 50 条
[31]   Monocular 3D Object Detection via Object Edge Information [J].
Wang, Yang ;
Liu, Songyan ;
Lin, Jiayu .
SIXTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2024, 2025, 13539
[32]   MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection [J].
Qiao, Junchao ;
Liu, Biao ;
Yang, Jiaqi ;
Wang, Baohua ;
Xiu, Sanmu ;
Du, Xin ;
Nie, Xiaobo .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (08) :7326-7332
[33]   Progressive Coordinate Transforms for Monocular 3D Object Detection [J].
Wang, Li ;
Zhang, Li ;
Zhu, Yi ;
Zhang, Zhi ;
He, Tong ;
Li, Mu ;
Xue, Xiangyang .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
[34]   Exploring Geometric Consistency for Monocular 3D Object Detection [J].
Lian, Qing ;
Ye, Botao ;
Xu, Ruijia ;
Yao, Weilong ;
Zhang, Tong .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1675-1684
[35]   MonoSG: Monocular 3D Object Detection With Stereo Guidance [J].
Fan, Zhiwei ;
Xu, Chao ;
Chu, Minghang ;
Huang, Yuling ;
Ma, Yaoyao ;
Wang, Jing ;
Xu, Yishen ;
Wu, Di .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (04) :3604-3611
[36]   Monocular 3D Object Detection With Motion Feature Distillation [J].
Hu, Henan ;
Li, Muyu ;
Zhu, Ming ;
Gao, Wen ;
Liu, Peiyu ;
Chan, Kwok-Leung .
IEEE ACCESS, 2023, 11 :82933-82945
[37]   Dense-JANet for Monocular 3D Object Detection [J].
Shang, Xiaoqing ;
Cheng, Zhiwei ;
Shi, Su ;
Cheng, Zhuanghao ;
Huang, Hongcheng .
2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
[38]   Monocular Object Detection Using 3D Geometric Primitives [J].
Carr, Peter ;
Sheikh, Yaser ;
Matthews, Iain .
COMPUTER VISION - ECCV 2012, PT I, 2012, 7572 :864-878
[39]   Monocular 3D Object Detection from Roadside Infrastructure [J].
Huang, Delu ;
Wen, Feng .
2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, :1672-1677
[40]   Monocular 3D object detection for an indoor robot environment [J].
Kim, Jiwon ;
Lee, GiJae ;
Kim, Jun-Sik ;
Kim, Hyunwoo J. ;
Kim, KangGeon .
2020 29TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2020, :438-445