Fuzzy cognitive maps learning using particle swarm optimization

被引:119
作者
Papageorgiou, EI [1 ]
Parsopoulos, KE
Stylios, C
Groumpos, PP
Vrahatis, MN
机构
[1] Univ Patras, Artificial Intelligence Res Ctr, Dept Elect & Comp Engn, GR-26500 Patras, Greece
[2] Univ Patras, Artificial Intelligence Res Ctr, Dept Math, Computat Intelligence Lab, GR-26110 Patras, Greece
[3] Univ Patras, Artificial Intelligence Res Ctr, TEI Epirus, Dept Commun Informat & Management, GR-47100 Artas, Greece
关键词
Fuzzy Cognitive Maps; Particle Swarm Optimization; swarm intelligence; soft computing;
D O I
10.1007/s10844-005-0864-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new learning algorithm for Fuzzy Cognitive Maps, which is based on the application of a swarm intelligence algorithm, namely Particle Swarm Optimization. The proposed approach is applied to detect weight matrices that lead the Fuzzy Cognitive Map to desired steady states, thereby refining the initial weight approximation provided by the experts. This is performed through the minimization of a properly defined objective function. This novel method overcomes some deficiencies of other learning algorithms and, thus, improves the efficiency and robustness of Fuzzy Cognitive Maps. The operation of the new method is illustrated on an industrial process control problem, and the obtained simulation results support the claim that it is robust and efficient.
引用
收藏
页码:95 / 121
页数:27
相关论文
共 62 条
[1]   Optimal design of power-system stabilizers using particle swarm optimization [J].
Abido, MA .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2002, 17 (03) :406-413
[2]   Feature selection for structure-activity correlation using binary particle swarms [J].
Agrafiotis, DK ;
Cedeño, W .
JOURNAL OF MEDICINAL CHEMISTRY, 2002, 45 (05) :1098-1107
[3]  
[Anonymous], 1998, Genetic programming: an introduction
[4]  
[Anonymous], J ADV COMPUTATIONAL
[5]  
Axelrod R., 2015, STRUCTURE DECISION C
[6]  
Back T., 1996, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms
[7]  
Beyer H.-G., 2001, NAT COMP SER
[8]  
Bonabeau E., 1999, Swarm Intelligence: From Natural to Artificial Systems, DOI 10.1093/oso/9780195131581.001.0001
[9]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[10]   Improving the fermentation medium for Echinocandin B production part II:: Particle swarm optimization [J].
Cockshott, AR ;
Hartman, BE .
PROCESS BIOCHEMISTRY, 2001, 36 (07) :661-669