Reversible Photodoping of TiO2 Nanoparticles for Photochromic Applications

被引:90
作者
Joost, Urmas [1 ,2 ]
Sutka, Andris [2 ,3 ]
Oja, Marek [2 ]
Smits, Krisjanis [4 ]
Dobelin, Nicola [5 ]
Loot, Ardi [2 ]
Jarvekulg, Martin [2 ]
Hirsimaki, Mika [1 ]
Valden, Mika [1 ]
Nommiste, Ergo [2 ]
机构
[1] Tampere Univ, Lab Photon, Surface Sci Grp, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
[2] Univ Tartu, Inst Phys, W Ostwaldi St 1, EE-50411 Tartu, Estonia
[3] Riga Tech Univ, Fac Mat Sci & Appl Chem, Res Lab Funct Mat Technol, Paula Valdena 3-7, LV-1048 Riga, Latvia
[4] Univ Latvia, Inst Solid State Phys, Kengaraga 8, LV-1063 Riga, Latvia
[5] RMS Fdn, Bischmattstr 12, CH-2544 Bettlach, Switzerland
基金
芬兰科学院;
关键词
SURFACE; NANOCRYSTALS; FILMS; WO3;
D O I
10.1021/acs.chemmater.8b04813
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Observations on the strong photochromic effect of crystalline TiO2 quantum dots (mean size approximate to 4 nm) are presented. The synthesized quantum dots consist of irregularly shaped anatase TiO2 nanoparticles (NPs) and are dispersed in butanol (8% by mass). Obtained NPs exhibit a dramatic photoresponse to UV light, enabling effective transmittance modulation in a broad wavelength range extending from the visible to near-infrared region, and even the thermal black body radiation regime beyond 10 mu m. The exceptional photoresponse is attributed to hole-scavenging by butanol, TiO2 self-reduction, injection of electrons to the conduction band, and consequent localized surface plasmon resonances in NPs. The observed optical effect is reversible, and the initial high transmittance state can be restored simply by exposing the NPs to air. The applied NP synthesis route is economic and can be easily scaled for applications such as smart window technologies.
引用
收藏
页码:8968 / 8974
页数:7
相关论文
共 29 条
[1]  
Bergmann J., 1998, CPD NEWSLETTER, V20, P5
[2]   Solid-state photochromic device based on nanocrystalline TiO2 functionalized with electron donor-acceptor species [J].
Biancardo, M ;
Argazzi, R ;
Bignozzi, CA .
INORGANIC CHEMISTRY, 2005, 44 (26) :9619-9621
[3]   SPECTROSCOPIC AND EXCITED-STATE PROPERTIES OF TITANIUM-DIOXIDE GELS [J].
CASTELLANO, FN ;
STIPKALA, JM ;
FRIEDMAN, LA ;
MEYER, GJ .
CHEMISTRY OF MATERIALS, 1994, 6 (11) :2123-2129
[4]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[5]   EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation [J].
Coronado, JM ;
Maira, AJ ;
Conesa, JC ;
Yeung, KL ;
Augugliaro, V ;
Soria, J .
LANGMUIR, 2001, 17 (17) :5368-5374
[6]   Spectroelectrochemical Signatures of Capacitive Charging and Ion Insertion in Doped Anatase Titania Nanocrystals [J].
Dahlman, Clayton J. ;
Tan, Yizheng ;
Marcus, Matthew A. ;
Milliron, Delia J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (28) :9160-9166
[7]   Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption [J].
De Trizio, Luca ;
Buonsanti, Raffaella ;
Schimpf, Alina M. ;
Llordes, Anna ;
Gamelin, Daniel R. ;
Simonutti, Roberto ;
Milliron, Delia J. .
CHEMISTRY OF MATERIALS, 2013, 25 (16) :3383-3390
[8]   Hole Scavenging by Organic Adsorbates on the TiO2 Surface: A DFT Model Study [J].
Di Valentin, Cristiana ;
Fittipaldi, Diego .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (11) :1901-1906
[9]   Reduced and n-Type Doped TiO2: Nature of Ti3+ Species [J].
Di Valentin, Cristiana ;
Pacchioni, Gianfranco ;
Selloni, Annabella .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20543-20552
[10]   Profex: a graphical user interface for the Rietveld refinement program BGMN [J].
Doebelin, Nicola ;
Kleeberg, Reinhard .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2015, 48 :1573-1580