Robust proportional-integral Kalman filter design using a convex optimization method

被引:12
作者
Jung, Jongchul [2 ]
Han, Sangoh [2 ]
Huh, Kunsoo [1 ]
机构
[1] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea
[2] Hanyang Univ, Dept Automot Engn, Seoul 133791, South Korea
关键词
proportional-integral observer; Kalman filter; convex optimization; robustness;
D O I
10.1007/s12206-007-1118-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes a design approach to the robust proportional-integral Kalman filter for stochastic linear systems under convex bounded parametric uncertainty, in which the filter has a proportional loop and an integral loop of the estimation error, providing a guaranteed minimum bound on the estimation error variance for all admissible uncertainties. The integral action is believed to increase steady-state estimation accuracy, improving robustness against uncertainties such as disturbances and modeling errors. In this study, the minimization problem of the upper bound of estimation error variance is converted into a convex optimization problem subject to linear matrix inequalities, and the proportional and the integral Kalman gains are optimally chosen by solving the problem. The estimation performance of the proposed filter is demonstrated through numerical examples and shows robustness against uncertainties, addressing the guaranteed performance in the mean square error sense.
引用
收藏
页码:879 / 886
页数:8
相关论文
共 19 条
[1]  
BAS YO, 1999, P IEEE C DEC CONTR, P4567
[2]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[3]   Disturbance attenuation using proportional integral observers [J].
Busawon, KK ;
Kabore, P .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (06) :618-627
[4]  
de Souza CE, 2000, ADV DES CONTROL, P175, DOI 10.1137/1.9780898719833.ch9
[5]   Eigenstructure assignment design for proportional-integral observers: continuous-time case [J].
Duan, GR ;
Liu, GP ;
Thompson, S .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (03) :263-267
[6]  
Gahinet P., 1995, LMI Control Toolbox
[7]   Optimal linear filtering under parameter uncertainty [J].
Geromel, JC .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (01) :168-175
[8]  
Kaczorek T., 1979, Regelungstechnik, V27, P359
[9]  
Kalman R. E. E., 1961, J. Basic Eng., V83, P95
[10]  
Linder SP, 1998, P AMER CONTR CONF, P3163, DOI 10.1109/ACC.1998.688445