Differentially Private Markov Chain Monte Carlo

被引:0
作者
Heikkila, Mikko A. [1 ]
Jalko, Joonas [2 ]
Dikmen, Onur [3 ]
Honkela, Antti [4 ]
机构
[1] Univ Helsinki, Helsinki Inst Informat Technol HIIT, Dept Math & Stat, Helsinki, Finland
[2] Aalto Univ, Dept Comp Sci, HIIT, Espoo, Finland
[3] Halmstad Univ, Ctr Appl Intelligent Syst Res CAISR, Halmstad, Sweden
[4] Univ Helsinki, HIIT, Dept Comp Sci, Helsinki, Finland
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019) | 2019年 / 32卷
基金
芬兰科学院;
关键词
MCMC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent developments in differentially private (DP) machine learning and DP Bayesian learning have enabled learning under strong privacy guarantees for the training data subjects. In this paper, we further extend the applicability of DP Bayesian learning by presenting the first general DP Markov chain Monte Carlo (MCMC) algorithm whose privacy-guarantees are not subject to unrealistic assumptions on Markov chain convergence and that is applicable to posterior inference in arbitrary models. Our algorithm is based on a decomposition of the Barker acceptance test that allows evaluating the Renyi DP privacy cost of the accept-reject choice. We further show how to improve the DP guarantee through data subsampling and approximate acceptance tests.
引用
收藏
页数:11
相关论文
共 34 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]  
[Anonymous], 2016, ARXIV161100340
[3]  
[Anonymous], 2017, PROCEED INGS OF THE
[4]  
Bardenet R, 2017, J MACH LEARN RES, V18, P1
[5]  
Bardenet R, 2014, PR MACH LEARN RES, V32
[6]   MONTE CARLO CALCULATIONS OF RADIAL DISTRIBUTION FUNCTIONS FOR A PROTON-ELECTRON PLASMA [J].
BARKER, AA .
AUSTRALIAN JOURNAL OF PHYSICS, 1965, 18 (02) :119-&
[7]  
Bernstein G., 2018, ADV NEURAL INFORM PR, P2924
[8]  
Betancourt M, 2015, PR MACH LEARN RES, V37, P533
[9]  
Brooks S, 2011, CH CRC HANDB MOD STA, pXIX
[10]   Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds [J].
Bun, Mark ;
Steinke, Thomas .
THEORY OF CRYPTOGRAPHY, TCC 2016-B, PT I, 2016, 9985 :635-658