Sodium on Batteries: Current Understanding of the Sodium Storage Mechanism in Hard Carbons

被引:11
作者
Fitzpatrick, Jack R.
Costa, Sara I. R.
Tapia-Ruiz, Nuria [1 ]
机构
[1] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
来源
JOHNSON MATTHEY TECHNOLOGY REVIEW | 2022年 / 66卷 / 01期
关键词
SOLID-ELECTROLYTE INTERPHASE; CAPACITY ANODE MATERIALS; ION BATTERIES; LITHIUM-ION; INSERTION; NA; GRAPHITE; INTERCALATION; PERFORMANCE; INSIGHTS;
D O I
10.1595/205651322X16250408525547
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, sodium-ion batteries (NIBs) have been explored as an alternative technology to lithium-ion batteries (LIBs) due to their cost-effectiveness and promise in mitigating the energy crisis we currently face. Similarities between both battery systems have enabled fast development of NIBs, however, their full commercialisation has been delayed due to the lack of an appropriate anode material. Hard carbons (HCs) arise as one of the most promising materials and are already used in the first generation of commercial NIBs. Although promising, HCs exhibit lower performance compared to commercial graphite used as an anode in LIBs in terms of reversible specific capacity, operating voltage, initial coulombic efficiency and cycling stability. Nevertheless, these properties vary greatly depending on the HC in question, for example surface area, porosity, degree of graphitisation and defect amount, which in turn are dependent on the synthesis method and precursor used. Optimisation of these properties will bring forward the widespread commercialisation of NIBs at a competitive level with current LIBs. This review aims to provide a brief overview of the current understanding of the underlying reaction mechanisms occurring in the state-of-the-art HC anode material as well as their structure-property interdependence. We expect to bring new insights into the engineering of HC materials to achieve optimal, or at least, comparable electrochemical performance to that of graphite in LIBs.
引用
收藏
页码:44 / 60
页数:17
相关论文
共 113 条
[1]   Sodium Storage Mechanism Investigations through Structural Changes in Hard Carbons [J].
Alptekin, Hande ;
Au, Heather ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
Goktas, Mustafa ;
Headen, Thomas F. ;
Adelhelm, Philipp ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) :9918-9927
[2]   Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon [J].
Alvin, Stevanus ;
Cahyadi, Handi Setiadi ;
Hwang, Jieun ;
Chang, Wonyoung ;
Kwak, Sang Kyu ;
Kim, Jaehoon .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[3]   Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries [J].
Alvin, Stevanus ;
Yoon, Dohyeon ;
Chandra, Christian ;
Susanti, Ratna F. ;
Chang, Wonyoung ;
Ryu, Changkook ;
Kim, Jaehoon .
JOURNAL OF POWER SOURCES, 2019, 430 :157-168
[4]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[5]  
[Anonymous], 2015, THE PARIS AGREEMENT
[6]  
[Anonymous], 2008, TROUBLE LITHIUM 2 MI
[7]  
[Anonymous], 2021, Mineral Commodity Summaries 2021
[8]   The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J].
Asenbauer, Jakob ;
Eisenmann, Tobias ;
Kuenzel, Matthias ;
Kazzazi, Arefeh ;
Chen, Zhen ;
Bresser, Dominic .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5387-5416
[9]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[10]   Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries [J].
Bobyleva, Zoia V. ;
Drozhzhin, Oleg A. ;
Dosaev, Kirill A. ;
Kamiyama, Azusa ;
Ryazantsev, Sergey V. ;
Komaba, Shinichi ;
Antipov, Evgeny V. .
ELECTROCHIMICA ACTA, 2020, 354