The asymptotic profile of χy-genera of Hilbert schemes of points on K3 surfaces

被引:9
作者
Manschot, Jan [1 ]
Rolon, Jose Miguel Zapata [2 ]
机构
[1] Trinity Coll Dublin, Coll Green, Sch Math, Dublin 2, Ireland
[2] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
COEFFICIENTS; FORMULAS;
D O I
10.4310/CNTP.2015.v9.n2.a6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hodge numbers of the Hilbert schemes of points on algebraic surfaces are given by Gottsche's formula, which expresses the generating functions of the Hodge numbers in terms of theta and eta functions. We specialize in this paper to generating functions of the chi(y)-genera of Hilbert schemes of n points on K3 surfaces. We determine asymptotic values of the coefficients of the chi(y)-genus for n -> infinity as well as their asymptotic profile.
引用
收藏
页码:413 / 435
页数:23
相关论文
共 27 条
[1]   DYSONS CRANK OF A PARTITION [J].
ANDREWS, GE ;
GARVAN, FG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) :167-171
[2]  
[Anonymous], 1985, Progress in Mathematics
[3]  
[Anonymous], 1999, ENCY MATH APPL
[4]  
Apostol T. M., 1976, MODULAR FUNCTIONS DI
[5]   Almost harmonic Maass forms and Kac-Wakimoto characters [J].
Bringmann, Kathrin ;
Folsom, Amanda .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 694 :179-202
[6]   Asymptotic formulas for coefficients of inverse theta functions [J].
Bringmann, Kathrin ;
Manschot, Jan .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2013, 7 (03) :497-513
[7]  
Bringmann K, 2014, T AM MATH SOC, V366, P1073
[8]  
Diaconescu E., 2010, ADV THEOR MATH PHYS, V1, P4
[9]   Asymptotic formulae for partition ranks [J].
Dousse, Jehanne ;
Mertens, Michael H. .
ACTA ARITHMETICA, 2015, 168 (01) :83-100
[10]   MAPPINGS AND SYMMETRIES OF PARTITIONS [J].
DYSON, FJ .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 51 (02) :169-180