ON DISTRIBUTION DENSITIES OF ALGEBRAIC POINTS UNDER DIFFERENT HEIGHT FUNCTIONS

被引:0
作者
V. Koleda, Denis [1 ]
机构
[1] Natl Acad Sci, Inst Math, Minsk, BELARUS
来源
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI | 2021年 / 65卷 / 06期
关键词
algebraic numbers; algebraic points; distribution of algebraic numbers; n-point correlation function; Diophantine approximation; NUMBERS;
D O I
10.29235/1561-8323-2021-65-6-647-653
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the article we consider the spatial distribution of points, whose coordinates are conjugate algebraic numbers of fixed degree. The distribution is introduced using a height function. We have obtained universal upper and lower bounds of the distribution density of such points using an arbitrary height function. We have shown how from a given joint density function of coefficients of a random polynomial of degree n, one can construct such a height function H that the polynomials q of degree n uniformly chosen under H[q] <= 1 have the same distribution of zeros as the former random polynomial.
引用
收藏
页码:647 / 653
页数:7
相关论文
共 8 条
[1]  
Bernik V., 2017, J MATH SCI, V224, P176
[2]   LOWER BOUNDS FOR THE NUMBER OF VECTORS WITH ALGEBRAIC COORDINATES NEAR SMOOTH SURFACES [J].
Budarina, Nataliya, V ;
Dickinson, Detta ;
Bernik, Vasiliy L. .
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (01) :7-12
[3]  
Chern SJ, 2001, J REINE ANGEW MATH, V540, P1
[4]   ON ALGEBRAIC POINTS OF FIXED DEGREE AND BOUNDED HEIGHT [J].
Denis, Koleda, V .
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2021, 65 (05) :519-525
[5]   Joint distribution of conjugate algebraic numbers: A random polynomial approach [J].
Goetze, Friedrich ;
Koleda, Denis ;
Zaporozhets, Dmitry .
ADVANCES IN MATHEMATICS, 2020, 359
[6]   Slicing the stars: counting algebraic numbers, integers, and units by degree and height [J].
Grizzard, Robert ;
Gunther, Joseph .
ALGEBRA & NUMBER THEORY, 2017, 11 (06) :1385-1436
[7]   Counting algebraic numbers with large height I [J].
Masser, David ;
Vaaler, Jeffrey D. .
DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 :237-+
[8]   Local Universality of Zeroes of Random Polynomials [J].
Tao, Terence ;
Van Vu .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (13) :5053-5139