On The Harmonious Colouring of Trees

被引:0
作者
Aflaki, A. [1 ]
Akbari, S. [1 ,2 ]
Eskandani, D. S. [1 ]
Jamaali, M. [1 ]
Ravanbod, H. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Inst Studies Theoret Phys & Math, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Harmonious colouring; Tree;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph. A harmonious colouring of G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. In this paper it is shown that if T is a tree of order n and Delta(T) >= n/2 then h(T) = Delta(T) + 1, where Delta(T) denotes the maximum degree of T. Let T-1 and T-2 be two trees of order n(1) and n(2), respectively and F = T-1 boolean OR T-2. In this paper it is shown that if Delta(T-i) = Delta(i) and Delta(i) >= n(i)/2, for i = 1, 2, then h(F) <= Delta(F) + 2. Moreover, if Delta(1) = Delta(2) = Delta >= n(i)/2, for i = 1, 2, then h(F) = Delta + 2.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 50 条
  • [41] An allometric model for trees
    Fleurant, C
    Duchesne, J
    Raimbault, P
    JOURNAL OF THEORETICAL BIOLOGY, 2004, 227 (01) : 137 - 147
  • [42] The smallest hard trees
    Bodirsky, Manuel
    Bulin, Jakub
    Starke, Florian
    Wernthaler, Michael
    CONSTRAINTS, 2023, 28 (02) : 105 - 137
  • [43] Path spectra for trees
    Chen, Guantao
    Faudree, Ralph J.
    Soltes, Lubomir
    DISCRETE MATHEMATICS, 2010, 310 (24) : 3455 - 3461
  • [44] Multicolorful connectivity of trees
    Jin, Zemin
    Gui, Xueyao
    Wang, Kaijun
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
  • [45] Mechanism of Overwintering in Trees
    Arakawa, Keita
    Kasuga, Jun
    Takata, Naoki
    SURVIVAL STRATEGIES IN EXTREME COLD AND DESICCATION: ADAPTATION MECHANISMS AND THEIR APPLICATIONS, 2018, 1081 : 129 - 147
  • [46] On secure domination in trees
    Li, Zepeng
    Shao, Zehui
    Xu, Jin
    QUAESTIONES MATHEMATICAE, 2017, 40 (01) : 1 - 12
  • [47] Universal maps on trees
    Eberhart, C
    Fugate, JB
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (10) : 4235 - 4251
  • [48] Partitioning infinite trees
    Horak, P
    Heinrich, K
    JOURNAL OF GRAPH THEORY, 2000, 34 (02) : 113 - 127
  • [49] LAPLACIAN PERMANENTS OF TREES
    BOTTI, P
    MERRIS, R
    VEGA, C
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (04) : 460 - 466
  • [50] On the decomposition dimension of trees
    Enomoto, H
    Nakamigawa, T
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 219 - 225