Let G be a simple graph. A harmonious colouring of G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. In this paper it is shown that if T is a tree of order n and Delta(T) >= n/2 then h(T) = Delta(T) + 1, where Delta(T) denotes the maximum degree of T. Let T-1 and T-2 be two trees of order n(1) and n(2), respectively and F = T-1 boolean OR T-2. In this paper it is shown that if Delta(T-i) = Delta(i) and Delta(i) >= n(i)/2, for i = 1, 2, then h(F) <= Delta(F) + 2. Moreover, if Delta(1) = Delta(2) = Delta >= n(i)/2, for i = 1, 2, then h(F) = Delta + 2.
机构:
Hunan Normal Univ, Sch Math & Stat, MOE LCSM, CHP LCOCS, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Sch Math & Stat, MOE LCSM, CHP LCOCS, Changsha 410081, Hunan, Peoples R China
Yu, Qian
Hou, Yaoping
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Sch Math & Stat, MOE LCSM, CHP LCOCS, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Sch Math & Stat, MOE LCSM, CHP LCOCS, Changsha 410081, Hunan, Peoples R China
机构:
Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South AfricaUniv Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
Henning, Michael A.
Klostermeyer, William F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Florida, Sch Comp, Jacksonville, FL 32224 USAUniv Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa