On The Harmonious Colouring of Trees

被引:0
|
作者
Aflaki, A. [1 ]
Akbari, S. [1 ,2 ]
Eskandani, D. S. [1 ]
Jamaali, M. [1 ]
Ravanbod, H. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Inst Studies Theoret Phys & Math, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Harmonious colouring; Tree;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph. A harmonious colouring of G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. In this paper it is shown that if T is a tree of order n and Delta(T) >= n/2 then h(T) = Delta(T) + 1, where Delta(T) denotes the maximum degree of T. Let T-1 and T-2 be two trees of order n(1) and n(2), respectively and F = T-1 boolean OR T-2. In this paper it is shown that if Delta(T-i) = Delta(i) and Delta(i) >= n(i)/2, for i = 1, 2, then h(F) <= Delta(F) + 2. Moreover, if Delta(1) = Delta(2) = Delta >= n(i)/2, for i = 1, 2, then h(F) = Delta + 2.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 50 条
  • [31] ARITHMETIC EXPRESSIONS AND TREES
    REDZIEWJ.RR
    COMMUNICATIONS OF THE ACM, 1969, 12 (02) : 81 - &
  • [32] Trees, Stumps, and Applications
    Butcher, John C.
    AXIOMS, 2018, 7 (03)
  • [33] Reversible Adaptive Trees
    Kergosien, Yannick L.
    ACTA BIOTHEORETICA, 2013, 61 (03) : 413 - 424
  • [34] The smallest hard trees
    Manuel Bodirsky
    Jakub Bulín
    Florian Starke
    Michael Wernthaler
    Constraints, 2023, 28 : 105 - 137
  • [35] Rainbow domination on trees
    Chang, Gerard J.
    Wu, Jiaojiao
    Zhu, Xuding
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (01) : 8 - 12
  • [36] Domination Numbers of Trees
    Jou, Min-Jen
    Lin, Jenq-Jong
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 319 - 321
  • [37] On the status sequences of trees
    Abiad, Aida
    Brimkov, Boris
    Grigoriev, Alexander
    THEORETICAL COMPUTER SCIENCE, 2021, 856 : 110 - 120
  • [38] Harmonic signed trees
    Yu, Qian
    Hou, Yaoping
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 475
  • [39] On trees and noncrossing partitions
    Klazar, M
    DISCRETE APPLIED MATHEMATICS, 1998, 82 (1-3) : 263 - 269
  • [40] Italian domination in trees
    Henning, Michael A.
    Klostermeyer, William F.
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 557 - 564