On The Harmonious Colouring of Trees

被引:0
|
作者
Aflaki, A. [1 ]
Akbari, S. [1 ,2 ]
Eskandani, D. S. [1 ]
Jamaali, M. [1 ]
Ravanbod, H. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Inst Studies Theoret Phys & Math, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Harmonious colouring; Tree;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph. A harmonious colouring of G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. In this paper it is shown that if T is a tree of order n and Delta(T) >= n/2 then h(T) = Delta(T) + 1, where Delta(T) denotes the maximum degree of T. Let T-1 and T-2 be two trees of order n(1) and n(2), respectively and F = T-1 boolean OR T-2. In this paper it is shown that if Delta(T-i) = Delta(i) and Delta(i) >= n(i)/2, for i = 1, 2, then h(F) <= Delta(F) + 2. Moreover, if Delta(1) = Delta(2) = Delta >= n(i)/2, for i = 1, 2, then h(F) = Delta + 2.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 50 条