Boosting the diagnostic power of amyloid-β PET using a data-driven spatially informed classifier for decision support

被引:2
作者
Venkataraman, Ashwin V. [1 ,2 ]
Bai, Wenjia [1 ,3 ]
Whittington, Alex [4 ]
Myers, James F. [1 ]
Rabiner, Eugenii A. [4 ]
Lingford-Hughes, Anne [1 ]
Matthews, Paul M. [1 ,2 ]
机构
[1] Imperial Coll London, Dept Brain Sci, 5th Floor Burlington Danes Bldg,160 Du Cane Rd, London W12 0NN, England
[2] Imperial Coll London, UK Dementia Res Inst, London, England
[3] Imperial Coll London, Data Sci Inst, London, England
[4] Invicro LLC, London, England
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院; 加拿大健康研究院; 英国医学研究理事会;
关键词
Alzheimer's; Amyloid clusters; Amyloid PET; Machine learning; Clustering; Automated decision; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; DEPOSITION; BRAIN; PREVALENCE; MANAGEMENT; PATHOLOGY; DEMENTIA; DECLINE; IMPACT;
D O I
10.1186/s13195-021-00910-8
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Amyloid-beta (A beta) PET has emerged as clinically useful for more accurate diagnosis of patients with cognitive decline. A beta deposition is a necessary cause or response to the cellular pathology of Alzheimer's disease (AD). Usual clinical and research interpretation of amyloid PET does not fully utilise all information regarding the spatial distribution of signal. We present a data-driven, spatially informed classifier to boost the diagnostic power of amyloid PET in AD. Methods Voxel-wise k-means clustering of amyloid-positive voxels was performed; clusters were mapped to brain anatomy and tested for their associations by diagnostic category and disease severity with 758 amyloid PET scans from volunteers in the AD continuum from the Alzheimer's Disease Neuroimaging Initiative (ADNI). A machine learning approach based on this spatially constrained model using an optimised quadratic support vector machine was developed for automatic classification of scans for AD vs non-AD pathology. Results This classifier boosted the accuracy of classification of AD scans to 81% using the amyloid PET alone with an area under the curve (AUC) of 0.91 compared to other spatial methods. This increased sensitivity to detect AD by 15% and the AUC by 9% compared to the use of a composite region of interest SUVr. Conclusions The diagnostic classification accuracy of amyloid PET was improved using an automated data-driven spatial classifier. Our classifier highlights the importance of considering the spatial variation in A beta PET signal for optimal interpretation of scans. The algorithm now is available to be evaluated prospectively as a tool for automated clinical decision support in research settings.
引用
收藏
页数:12
相关论文
共 44 条
  • [1] [Anonymous], 2012, AM PRESCR INF
  • [2] NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES
    BRAAK, H
    BRAAK, E
    [J]. ACTA NEUROPATHOLOGICA, 1991, 82 (04) : 239 - 259
  • [3] Clinical utility of amyloid PET imaging with (18) F-florbetapir: a retrospective study of 100 patients
    Carswell, Christopher James
    Win, Zarni
    Muckle, Kirsty
    Kennedy, Angus
    Waldman, Adam
    Dawe, Gemma
    Barwick, Tara D.
    Khan, Sameer
    Malhotra, Paresh A.
    Perry, Richard J.
    [J]. JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2018, 89 (03) : 294 - 299
  • [4] Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging
    Choi, Hongyoon
    Jin, Kyong Hwan
    [J]. BEHAVIOURAL BRAIN RESEARCH, 2018, 344 : 103 - 109
  • [5] Use of Florbetapir-PET for Imaging β-Amyloid Pathology
    Clark, Christopher M.
    Schneider, Julie A.
    Bedell, Barry J.
    Beach, Thomas G.
    Bilker, Warren B.
    Mintun, Mark A.
    Pontecorvo, Michael J.
    Hefti, Franz
    Carpenter, Alan P.
    Flitter, Matthew L.
    Krautkramer, Michael J.
    Kung, Hank F.
    Coleman, R. Edward
    Doraiswamy, P. Murali
    Fleisher, Adam S.
    Sabbagh, Marwan N.
    Sadowsky, Carl H.
    Reiman, P. Eric M.
    Zehntner, Simone P.
    Skovronsky, Daniel M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (03): : 275 - 283
  • [6] Alzheimer's disease drug development pipeline: 2019
    Cummings, Jeffrey
    Lee, Garam
    Ritter, Aaron
    Sabbagh, Marwan
    Zhong, Kate
    [J]. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2019, 5 (01) : 272 - 293
  • [7] Association of Amyloid Positron Emission Tomography With Changes in Diagnosis and Patient Treatment in an Unselected Memory Clinic Cohort The ABIDE Project
    de Wilde, Arno
    van der Flier, Wiesje M.
    Pelkmans, Wiesje
    Bouwman, Femke
    Verwer, Jurre
    Groot, Colin
    van Buchem, Marieke M.
    Zwan, Marissa
    Ossenkoppele, Rik
    Yaqub, Maqsood
    Kunneman, Marleen
    Smets, Ellen M. A.
    Barkhof, Frederik
    Lammertsma, Adriaan A.
    Stephens, Andrew
    van Lier, Erik
    Biessels, Geert Jan
    van Berckel, Bart N.
    Scheltens, Philip
    [J]. JAMA NEUROLOGY, 2018, 75 (09) : 1062 - 1070
  • [8] Regional amyloid accumulation and cognitive decline in initially amyloid-negative adults
    Farrell, Michelle E.
    Chen, Xi
    Rundle, Melissa M.
    Chan, Micaela Y.
    Wig, Gagan S.
    Park, Denise C.
    [J]. NEUROLOGY, 2018, 91 (19) : E1809 - E1821
  • [9] The Major Risk Factors for Alzheimer's Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques
    Frigerio, Carlo Sala
    Wolfs, Leen
    Fattorelli, Nicola
    Thrupp, Nicola
    Voytyukt, Iryna
    Schmidt, Inga
    Mancuso, Renzo
    Chen, Wei-Ting
    Woodbury, Maya E.
    Srivastava, Gyan
    Moller, Thomas
    Hudry, Eloise
    Das, Sudeshna
    Saido, Takaomi
    Karran, Eric
    Hyman, Bradley
    Perry, V. Hugh
    Fiers, Mark
    De Strooper, Bart
    [J]. CELL REPORTS, 2019, 27 (04): : 1293 - +
  • [10] In vivo staging of regional amyloid deposition
    Grothe, Michel J.
    Barthel, Henryk
    Sepulcre, Jorge
    Dyrba, Martin
    Sabri, Osama
    Teipel, Stefan J.
    [J]. NEUROLOGY, 2017, 89 (20) : 2031 - 2038