Boosting the diagnostic power of amyloid-β PET using a data-driven spatially informed classifier for decision support

被引:3
作者
Venkataraman, Ashwin V. [1 ,2 ]
Bai, Wenjia [1 ,3 ]
Whittington, Alex [4 ]
Myers, James F. [1 ]
Rabiner, Eugenii A. [4 ]
Lingford-Hughes, Anne [1 ]
Matthews, Paul M. [1 ,2 ]
机构
[1] Imperial Coll London, Dept Brain Sci, 5th Floor Burlington Danes Bldg,160 Du Cane Rd, London W12 0NN, England
[2] Imperial Coll London, UK Dementia Res Inst, London, England
[3] Imperial Coll London, Data Sci Inst, London, England
[4] Invicro LLC, London, England
基金
英国工程与自然科学研究理事会; 加拿大健康研究院; 英国医学研究理事会; 美国国家卫生研究院;
关键词
Alzheimer's; Amyloid clusters; Amyloid PET; Machine learning; Clustering; Automated decision; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; DEPOSITION; BRAIN; PREVALENCE; MANAGEMENT; PATHOLOGY; DEMENTIA; DECLINE; IMPACT;
D O I
10.1186/s13195-021-00910-8
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Amyloid-beta (A beta) PET has emerged as clinically useful for more accurate diagnosis of patients with cognitive decline. A beta deposition is a necessary cause or response to the cellular pathology of Alzheimer's disease (AD). Usual clinical and research interpretation of amyloid PET does not fully utilise all information regarding the spatial distribution of signal. We present a data-driven, spatially informed classifier to boost the diagnostic power of amyloid PET in AD. Methods Voxel-wise k-means clustering of amyloid-positive voxels was performed; clusters were mapped to brain anatomy and tested for their associations by diagnostic category and disease severity with 758 amyloid PET scans from volunteers in the AD continuum from the Alzheimer's Disease Neuroimaging Initiative (ADNI). A machine learning approach based on this spatially constrained model using an optimised quadratic support vector machine was developed for automatic classification of scans for AD vs non-AD pathology. Results This classifier boosted the accuracy of classification of AD scans to 81% using the amyloid PET alone with an area under the curve (AUC) of 0.91 compared to other spatial methods. This increased sensitivity to detect AD by 15% and the AUC by 9% compared to the use of a composite region of interest SUVr. Conclusions The diagnostic classification accuracy of amyloid PET was improved using an automated data-driven spatial classifier. Our classifier highlights the importance of considering the spatial variation in A beta PET signal for optimal interpretation of scans. The algorithm now is available to be evaluated prospectively as a tool for automated clinical decision support in research settings.
引用
收藏
页数:12
相关论文
共 44 条
[1]  
[Anonymous], 2012, AM PRESCR INF
[2]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[3]   Clinical utility of amyloid PET imaging with (18) F-florbetapir: a retrospective study of 100 patients [J].
Carswell, Christopher James ;
Win, Zarni ;
Muckle, Kirsty ;
Kennedy, Angus ;
Waldman, Adam ;
Dawe, Gemma ;
Barwick, Tara D. ;
Khan, Sameer ;
Malhotra, Paresh A. ;
Perry, Richard J. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2018, 89 (03) :294-299
[4]   Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging [J].
Choi, Hongyoon ;
Jin, Kyong Hwan .
BEHAVIOURAL BRAIN RESEARCH, 2018, 344 :103-109
[5]   Use of Florbetapir-PET for Imaging β-Amyloid Pathology [J].
Clark, Christopher M. ;
Schneider, Julie A. ;
Bedell, Barry J. ;
Beach, Thomas G. ;
Bilker, Warren B. ;
Mintun, Mark A. ;
Pontecorvo, Michael J. ;
Hefti, Franz ;
Carpenter, Alan P. ;
Flitter, Matthew L. ;
Krautkramer, Michael J. ;
Kung, Hank F. ;
Coleman, R. Edward ;
Doraiswamy, P. Murali ;
Fleisher, Adam S. ;
Sabbagh, Marwan N. ;
Sadowsky, Carl H. ;
Reiman, P. Eric M. ;
Zehntner, Simone P. ;
Skovronsky, Daniel M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (03) :275-283
[6]   Alzheimer's disease drug development pipeline: 2019 [J].
Cummings, Jeffrey ;
Lee, Garam ;
Ritter, Aaron ;
Sabbagh, Marwan ;
Zhong, Kate .
ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2019, 5 (01) :272-293
[7]   Association of Amyloid Positron Emission Tomography With Changes in Diagnosis and Patient Treatment in an Unselected Memory Clinic Cohort The ABIDE Project [J].
de Wilde, Arno ;
van der Flier, Wiesje M. ;
Pelkmans, Wiesje ;
Bouwman, Femke ;
Verwer, Jurre ;
Groot, Colin ;
van Buchem, Marieke M. ;
Zwan, Marissa ;
Ossenkoppele, Rik ;
Yaqub, Maqsood ;
Kunneman, Marleen ;
Smets, Ellen M. A. ;
Barkhof, Frederik ;
Lammertsma, Adriaan A. ;
Stephens, Andrew ;
van Lier, Erik ;
Biessels, Geert Jan ;
van Berckel, Bart N. ;
Scheltens, Philip .
JAMA NEUROLOGY, 2018, 75 (09) :1062-1070
[8]   Regional amyloid accumulation and cognitive decline in initially amyloid-negative adults [J].
Farrell, Michelle E. ;
Chen, Xi ;
Rundle, Melissa M. ;
Chan, Micaela Y. ;
Wig, Gagan S. ;
Park, Denise C. .
NEUROLOGY, 2018, 91 (19) :E1809-E1821
[9]   The Major Risk Factors for Alzheimer's Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques [J].
Frigerio, Carlo Sala ;
Wolfs, Leen ;
Fattorelli, Nicola ;
Thrupp, Nicola ;
Voytyukt, Iryna ;
Schmidt, Inga ;
Mancuso, Renzo ;
Chen, Wei-Ting ;
Woodbury, Maya E. ;
Srivastava, Gyan ;
Moller, Thomas ;
Hudry, Eloise ;
Das, Sudeshna ;
Saido, Takaomi ;
Karran, Eric ;
Hyman, Bradley ;
Perry, V. Hugh ;
Fiers, Mark ;
De Strooper, Bart .
CELL REPORTS, 2019, 27 (04) :1293-+
[10]   In vivo staging of regional amyloid deposition [J].
Grothe, Michel J. ;
Barthel, Henryk ;
Sepulcre, Jorge ;
Dyrba, Martin ;
Sabri, Osama ;
Teipel, Stefan J. .
NEUROLOGY, 2017, 89 (20) :2031-2038