Design of Turbulent Flame Aerosol Reactors by Mixing-Limited Fluid Dynamics

被引:33
作者
Groehn, Arto J. [1 ]
Buesser, Beat [1 ]
Jokiniemi, Jorma K. [2 ,3 ]
Pratsinis, Sotiris E. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Proc Engn, Dept Mech & Proc Engn, Particle Technol Lab, CH-8092 Zurich, Switzerland
[2] Univ Eastern Finland, Fine Particle & Aerosol Technol Lab, Dept Environm Sci, FI-70211 Kuopio, Finland
[3] VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland
基金
瑞士国家科学基金会;
关键词
NANOPARTICLE SYNTHESIS; TITANIA NANOPARTICLES; AGGLOMERATE PARTICLES; SILICA NANOPARTICLES; AIR FLAMES; COAGULATION; MODEL; GROWTH; SIMULATION; EVOLUTION;
D O I
10.1021/ie1017817
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanoparticle synthesis in turbulent flame aerosol reactors is elucidated by computational fluid dynamics (CFD). Mixing-limited combustion is modeled, and total particle number, area, and volume concentration are described by transport equations including terms for particle dynamics. The spread of the particle size distribution at a given streamline is neglected as flame-made aerosols rapidly attain their self-preserving distribution. Results are in good agreement with primary particle data of turbulent diffusion flame synthesis of silica nanoparticles by oxidation of hexamethyldisiloxane vapor at different laboratories without adjustable parameters. Measured agglomerate mobility diameters best matched the predicted volume-equivalent soft-agglomerate diameters. The employed fractal-like dimensions (D-f = 1.5-3) had no effect on the predicted primary particle and aggregate diameters and a rather small effect on volume-equivalent soft-agglomerate diameters.
引用
收藏
页码:3159 / 3168
页数:10
相关论文
共 58 条
[1]   VAPOR SYNTHESIS OF TITANIA POWDER BY TITANIUM TETRACHLORIDE OXIDATION [J].
AKHTAR, MK ;
YUN, XO ;
PRATSINIS, SE .
AICHE JOURNAL, 1991, 37 (10) :1561-1570
[2]  
[Anonymous], 1996, CHEMKIN 3 FORTRAN CH
[3]  
*ANSYS INC, 2009, ANS FLUENT 12 0 THEO
[4]   On the relevance of accounting for the evolution of the fractal dimension in aerosol process simulations [J].
Artelt, C ;
Schmid, HJ ;
Peukert, W .
JOURNAL OF AEROSOL SCIENCE, 2003, 34 (05) :511-534
[5]  
BILGER RW, 1989, ANNU REV FLUID MECH, V21, P101
[6]   Morphological Characterization of Fumed Silica Aggregates [J].
Boldridge, David .
AEROSOL SCIENCE AND TECHNOLOGY, 2010, 44 (03) :182-186
[7]  
*BRIGH YOUNG U DES, 2009, DIPPR PROJ 801 FULL
[8]   Structure & strength of silica-PDMS nanocomposites [J].
Camenzind, Adrian ;
Schweizer, Thomas ;
Sztucki, Michael ;
Pratsinis, Sotiris E. .
POLYMER, 2010, 51 (08) :1796-1804
[9]   Flame-made nanoparticles for nanocomposites [J].
Camenzind, Adrian ;
Caseri, Walter R. ;
Pratsinis, Sotiris E. .
NANO TODAY, 2010, 5 (01) :48-65
[10]  
David Kingery W., 1976, INTRO CERAMICS, V17