Forcing Subsets of Connected Co-Independent Hop Domination in the Edge Corona and Lexicographic Product of Graphs

被引:0
作者
Calanza, Yves Dave L. [1 ]
Rara, Helen M. [2 ]
机构
[1] Mindanao State Univ Iligan Inst Technol, Dept Math & Stat, Coll Sci & Math, Iligan 9200, Philippines
[2] Mindanao State Univ Iligan Inst Technol, Dept Math & Stat, Coll Sci & Math, Ctr Graph Theory Algebra & Anal Premier Res Inst S, Iligan 9200, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2022年 / 15卷 / 04期
关键词
Key Words and Phrases; Forcing subsets; connected co-independent hop; domination; co-independent set; edge corona; lexicographic product; NUMBER;
D O I
10.29020/nybg.ejpam.v15i4.4521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study deals with the forcing subsets of a minimum connected co-independent hop dominating sets in graphs. Bounds or exact values of the forcing connected co-independent hop domination numbers of graphs resulting from some binary operations such as edge corona and lexicographic product of graphs are determined.Some main results generated in this study include: (a) characterization of the minimum connected co-independent hop dominating sets; and (b) characterization of the forcing subsets for these types of sets.
引用
收藏
页码:1597 / 1612
页数:16
相关论文
共 16 条
[1]   Forcing Independent Domination Number of a Graph [J].
Armada, Cris L. ;
Canoy, Sergio, Jr. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04) :1371-1381
[2]   FORCING DOMINATION NUMBERS OF GRAPHS UNDER SOME BINARY OPERATIONS [J].
Armada, Cris L. ;
Canoy, Sergio R., Jr. ;
Go, Carmelito E. .
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (03) :213-228
[3]   Bounds on the hop domination number of a tree [J].
Ayyaswamy, S. K. ;
Krishnakumari, B. ;
Natarajan, C. ;
Venkatakrishnan, Y. B. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04) :449-455
[4]  
Berge C., 1958, Theorie des graphes et ses applications
[5]  
Chartrand G., 1997, Journal of Combinatorial Mathematics and Combinatorial Computing, V25, P161
[6]   A NOTE ON NON-DOMINATING SET PARTITIONS IN GRAPHS [J].
Desormeaux, Wyatt J. ;
Haynes, Teresa W. ;
Henning, Michael A. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) :1043-1050
[7]  
Gayathri B., 2011, International Journal Contemp. Mathematics and Sciences, V6, P423
[8]   GRAPHICAL PROPERTIES OF POLYHEXES - PERFECT MATCHING VECTOR AND FORCING [J].
HARARY, F ;
KLEIN, DJ ;
ZIVKOVIC, TP .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 6 (03) :295-306
[9]  
Harary F., 1994, Graph theory
[10]   On the forcing connected domination number of a graph [J].
Kavitha, S. ;
Chellathurai, S. Robinson ;
John, J. .
Journal of Discrete Mathematical Sciences and Cryptography, 2017, 20 (03) :611-624