On a semilinear elliptic equation with singular term and Hardy-Sobolev critical growth

被引:10
作者
Chen, Jianqing [1 ]
机构
[1] Fujian Normal Univ, Dept Math, Fuzhou 350007, Peoples R China
关键词
nontrivial solutions; critical Hardy-Sobolev exponent;
D O I
10.1002/mana.200410517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
in a previous work [6], we got an exact local behavior to the positive solutions of an elliptic equation. With the help of this exact local behavior, we obtain in this paper the existence of solutions of an equation with Hardy-Sobolev critical growth and singular term by using variational methods. The result obtained here, even in a particular case, relates with a partial (positive) answer to an open problem proposed in: A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth sermlinear elliptic equations, J. Differential Equations 177, 494-522 (2001). (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:838 / 850
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[2]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[3]   Weak eigenfunctions for the linearization of extremal elliptic problems [J].
Cabre, X ;
Martel, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (01) :30-56
[4]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[5]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[6]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[7]  
2-I
[8]   Exact local behavior of positive solutions for a semilinear elliptic equation with Hardy term [J].
Chen, JQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (11) :3225-3229
[9]   Existence of solutions for a nonlinear PDE with an inverse square potential [J].
Chen, JQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) :497-519
[10]   ON THE BEST CONSTANT FOR A WEIGHTED SOBOLEV-HARDY INEQUALITY [J].
CHOU, KS ;
CHU, CW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 :137-151