Photocatalytic solar hydrogen production from water on a 100-m2 scale

被引:1188
作者
Nishiyama, Hiroshi [1 ]
Yamada, Taro [1 ]
Nakabayashi, Mamiko [2 ]
Maehara, Yoshiki [3 ,4 ]
Yamaguchi, Masaharu [1 ]
Kuromiya, Yasuko [1 ]
Nagatsuma, Yoshie [1 ]
Tokudome, Hiromasa [3 ,5 ]
Akiyama, Seiji [3 ,6 ]
Watanabe, Tomoaki [7 ]
Narushima, Ryoichi [1 ]
Okunaka, Sayuri [3 ,5 ,9 ]
Shibata, Naoya [2 ]
Takata, Tsuyoshi [8 ]
Hisatomi, Takashi [6 ]
Domen, Kazunari [1 ,8 ]
机构
[1] Univ Tokyo, Off Univ Prof, Tokyo, Japan
[2] Univ Tokyo, Inst Engn Innovat, Sch Engn, Tokyo, Japan
[3] Japan Technol Res Assoc Artificial Photosynthet C, Tokyo, Japan
[4] FUJIFILM Corp, Chigasaki, Kanagawa, Japan
[5] TOTO Ltd, Res Inst, Chigasaki, Kanagawa, Japan
[6] Mitsubishi Chem Corp, Sci & Innovat Ctr, Yokohama, Kanagawa, Japan
[7] Meiji Univ, Sch Sci & Technol, Dept Appl Chem, Kawasaki, Kanagawa, Japan
[8] Shinshu Univ, Res Initiat Supra Mat, Interdisciplinary Cluster Cutting Edge Res, Nagano, Nagano, Japan
[9] Natl Inst Adv Ind Sci & Technol, Global Zero Emiss Res Ctr GZR, Tsukuba, Ibaraki, Japan
关键词
EFFICIENCY; DRIVEN; SHEETS; GAS;
D O I
10.1038/s41586-021-03907-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The unprecedented impact of human activity on Earth's climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable from water through photocatalysis using sunlight, and through electrolysis driven by solar or wind energy(1,2). The most efficient solar hydrogen production schemes, which couple solar cells to electrolysis systems, reach solar-to-hydrogen (STH) energy conversion efficiencies of 30% at a laboratory scale(3). Photocatalytic water splitting reaches notably lower conversion efficiencies of only around 1%, but the system design is much simpler and cheaper and more amenable to scale-up(1,2)-provided the moist, stoichiometric hydrogen and oxygen product mixture can be handled safely in a field environment and the hydrogen recovered. Extending our earlier demonstration of a 1-m(2) panel reactor system based on a modified, aluminium-doped strontium titanate particulate photocatalyst(4), we here report safe operation of a 100-m(2) array of panel reactors over several months with autonomous recovery of hydrogen from the moist gas product mixture using a commercial polyimide membrane(5). The system, optimized for safety and durability, and remaining undamaged on intentional ignition of recovered hydrogen, reaches a maximum STH of 0.76%. While the hydrogen production is inefficient and energy negative overall, our findings demonstrate that safe, large-scale photocatalytic water splitting, and gas collection and separation are possible. To make the technology economically viable and practically useful, essential next steps are reactor and process optimization to substantially reduce costs and improve STH efficiency, photocatalyst stability and gas separation efficiency.
引用
收藏
页码:304 / +
页数:15
相关论文
共 19 条
[1]   Concentrating solar power tower technology: present status and outlook [J].
Boretti, Albert ;
Castelletto, Stefania ;
Al-Zubaidy, Sarim .
NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2019, 8 (01) :10-31
[2]   A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation [J].
Goto, Yosuke ;
Hisatomi, Takashi ;
Wang, Qian ;
Higashi, Tomohiro ;
Ishikiriyama, Kohki ;
Maeda, Tatsuya ;
Sakata, Yoshihisa ;
Okunaka, Sayuri ;
Tokudome, Hiromasa ;
Katayama, Masao ;
Akiyama, Seiji ;
Nishiyama, Hiroshi ;
Inoue, Yasunobu ;
Takewaki, Takahiko ;
Setoyama, Tohru ;
Minegishi, Tsutomu ;
Takata, Tsuyoshi ;
Yamada, Taro ;
Domen, Kazunari .
JOULE, 2018, 2 (03) :509-520
[3]   Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts [J].
Hisatomi, Takashi ;
Domen, Kazunari .
NATURE CATALYSIS, 2019, 2 (05) :387-399
[4]   Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% [J].
Jia, Jieyang ;
Seitz, Linsey C. ;
Benck, Jesse D. ;
Huo, Yijie ;
Chen, Yusi ;
Ng, Jia Wei Desmond ;
Bilir, Taner ;
Harris, James S. ;
Jaramillo, Thomas F. .
NATURE COMMUNICATIONS, 2016, 7
[5]   Effect of the ambient conditions on the operation of a large-area integrated photovoltaic-electrolyser [J].
Kemppainen, Erno ;
Aschbrenner, Stefan ;
Bao, Fuxi ;
Luxa, Aline ;
Schary, Christian ;
Bors, Radu ;
Janke, Stefan ;
Dorbandt, Iris ;
Stannowski, Bernd ;
Schlatmann, Rutger ;
Calnan, Sonya .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (09) :4831-4847
[6]   Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge [J].
Kim, Jin Hyun ;
Hansora, Dharmesh ;
Sharma, Pankaj ;
Jang, Ji-Wook ;
Lee, Jae Sung .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (07) :1908-1971
[7]   An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination [J].
Lyu, Hao ;
Hisatomi, Takashi ;
Goto, Yosuke ;
Yoshida, Masaaki ;
Higashi, Tomohiro ;
Katayama, Masao ;
Takata, Tsuyoshi ;
Minegishi, Tsutomu ;
Nishiyama, Hiroshi ;
Yamada, Taro ;
Sakata, Yoshihisa ;
Asakura, Kiyotaka ;
Domen, Kazunari .
CHEMICAL SCIENCE, 2019, 10 (11) :3196-3201
[8]   Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting [J].
Maeda, Kazuhiko ;
Teramura, Kentaro ;
Lu, Daling ;
Takata, Tsuyoshi ;
Saito, Nobuo ;
Inoue, Yasunobu ;
Domen, Kazunari .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (28) :13753-13758
[9]   Preparing for the future: Solar energy and bioeconomy in the United Arab Emirates [J].
Pagliaro, Mario .
ENERGY SCIENCE & ENGINEERING, 2019, 7 (05) :1451-1457
[10]   Decoupling Gas Evolution from Water-Splitting Electrodes [J].
Penas, Pablo ;
van der Linde, Peter ;
Vijselaar, Wouter ;
van der Meer, Devaraj ;
Lohse, Detlef ;
Huskens, Jurriaan ;
Gardeniers, Han ;
Modestino, Miguel A. ;
Rivas, David Fernandez .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (15) :H769-H776