Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria

被引:12
|
作者
Najafi Zilaie, Mahmood [1 ]
Mosleh Arani, Asghar [1 ]
Etesami, Hassan [2 ]
Dinarvand, Mehri [3 ]
机构
[1] Yazd Univ, Fac Nat Resources, Dept Environm Sci, Yazd, Iran
[2] Univ Tehran, Dept Soil Sci, Karaj, Iran
[3] Agr Res Educ & Extens Org AREEO, Khuzestan Agr & Nat Resources Res & Educ Ctr, Forests & Rangelands Res Dept, Ahvaz, Iran
来源
关键词
Bacillus pumilus; Halostachys belangeriana; nutrients; PGPR; Seidlitzia rosmarinus; Zhihengliuella halotolerans; 1-AMINOCYCLOPROPANE-1-CARBOXYLATE DEAMINASE; SALT STRESS; PROLINE; BACTERIA; DROUGHT; L; MECHANISMS; PHOTOSYNTHESIS; BIOSYNTHESIS; POLLUTION;
D O I
10.3389/fpls.2022.948260
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Because of global warming, desertification is increasing. One of the best strategies for combating desertification is reforestation of forests and biological operations of vegetation. However, events like soil salinity and dust storms, as the most important manifestations of desertification, prevent vegetation from settling in these areas. In this study, the effects of two halotolerant plant growth-promoting rhizobacterial strains, Bacillus pumilus HR and Zhihengliuella halotolerans SB, on physiological and nutritional status of the desert halophyte Haloxylon aphyllum under the stress of salinity (0, 300, and 600 mM NaCl) and dust (0 and 1.5 g m(-2) month(-1)) were examined. Under dust application, the Z. halotolerans SB strain compared to the B. pumilus HR strain and the combination of these two bacterial strains improved the content of total chlorophyll (247 and 316%), carotenoid (94 and 107%), phosphorus (113 and 209%), magnesium (196 and 212%), and total dry biomass (13 and 28%) in H. aphyllum at salinity levels of 300 and 600 mM NaCl, respectively. Under conditions of combined application of dust and salinity, B. pumilus HR compared to Z. halotolerans SB and the combination of two strains at salinity levels of 300 and 600 mM NaCl, respectively, had better performance in increasing the content of iron (53 and 69%), calcium (38 and 161%), and seedling quality index (95 and 56%) in H. aphyllum. The results also showed that both bacterial strains and their combination were able to reduce the content of ascorbic acid, flavonoid, total phenol, proline, and malondialdehyde, and catalase activity, and ultimately improve the antioxidant capacity of H. aphyllum. This showed that the use of halotolerant rhizobacteria can stop the production of free radicals and thus prevent cell membrane damage and the formation of malondialdehyde under salinity and dust stress. The results of this study for the first time showed that halotolerant rhizobacteria can increase the seedling quality index of H. aphyllum under combined conditions of salinity and dust. The use of these bacteria can be useful in the optimal afforestation of H. aphyllum species in arid and semi-arid ecosystems.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Secondary Metabolites From Halotolerant Plant Growth Promoting Rhizobacteria for Ameliorating Salinity Stress in Plants
    Sunita, Kumari
    Mishra, Isha
    Mishra, Jitendra
    Prakash, Jai
    Arora, Naveen Kumar
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [22] PRELIMINARY INVESTIGATIONS ON SELECTION OF SYNERGISTIC HALOTOLERANT PLANT GROWTH PROMOTING RHIZOBACTERIA FOR INDUCING SALINITY TOLERANCE IN WHEAT
    Khan, Muhammad Yahya
    Zahir, Zahir Ahmad
    Asghar, Hafiz Naeem
    Waraich, Ejaz Ahmad
    PAKISTAN JOURNAL OF BOTANY, 2017, 49 (04) : 1541 - 1551
  • [23] Evaluation of air pollution (dust) tolerance index of three desert species Seidlitzia rosmarinus, Haloxylon aphyllum, and Nitraria schoberi under salinity stress
    Zilaie, Mahmood Najafi
    Arani, Asghar Mosleh
    Etesami, Hassan
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (07)
  • [24] Evaluation of air pollution (dust) tolerance index of three desert species Seidlitzia rosmarinus, Haloxylon aphyllum, and Nitraria schoberi under salinity stress
    Mahmood Najafi Zilaie
    Asghar Mosleh Arani
    Hassan Etesami
    Environmental Monitoring and Assessment, 2023, 195
  • [25] Salinity Stress: Toward Sustainable Plant Strategies and Using Plant Growth-Promoting Rhizobacteria Encapsulation for Reducing It
    Riseh, Roohallah Saberi
    Ebrahimi-Zarandi, Marzieh
    Tamanadar, Elahe
    Pour, Mojde Moradi
    Thakur, Vijay Kumar
    SUSTAINABILITY, 2021, 13 (22)
  • [26] The application of plant growth-promoting rhizobacteria enhances the tolerance of tobacco seedling to salt stress
    Shang, Xianchao
    Hui, Liu
    Jianlong, Zhang
    Hao, Zong
    Cao, Changdai
    Le, Hou
    Weimin, Zhang
    Yang, Long
    Gao, Yun
    Hou, Xin
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 265
  • [27] Role of Plant Growth-Promoting Rhizobacteria (PGPR), Biochar, and Chemical Fertilizer under Salinity Stress
    Fazal, Aliya
    Bano, Asghari
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2016, 47 (17) : 1985 - 1993
  • [28] Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review
    Ha-Tran, Dung Minh
    Nguyen, Trinh Thi My
    Hung, Shih-Hsun
    Huang, Eugene
    Huang, Chieh-Chen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (06) : 1 - 38
  • [29] Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes
    Mutumba, Filipe Adriano
    Zagal, Erick
    Gerding, Macarena
    Castillo-Rosales, Dalma
    Paulino, Leandro
    Schoebitz, Mauricio
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2018, 18 (04): : 1080 - 1096
  • [30] Plant Growth-Promoting Rhizobacteria-Mediated Adaptive Responses of Plants Under Salinity Stress
    Hoque, Md Najmol
    Hannan, Afsana
    Imran, Shahin
    Paul, Newton Chandra
    Mondal, Md Fuad
    Sadhin, Md Mahabubur Rahman
    Bristi, Jannatul Mawa
    Dola, Fariha Shahid
    Abu Hanif, Md
    Ye, Wenxiu
    Brestic, Marian
    Rhaman, Mohammad Saidur
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (03) : 1307 - 1326