Well posed constraint-preserving boundary conditions for the linearized Einstein equations

被引:67
作者
Calabrese, G
Pullin, J
Reula, O
Sarbach, O
Tiglio, M
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
关键词
Boundary Condition; Manifold; Evolution Equation; Einstein Equation; Minkowski Space;
D O I
10.1007/s00220-003-0889-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we address the problem of specifying boundary conditions for Einstein's equations when linearized around Minkowski space using the generalized Einstein-Christoffel symmetric hyperbolic system of evolution equations. The boundary conditions we work out guarantee that the constraints are satisfied provided they are satisfied on the initial slice and ensures a well posed initial-boundary value formulation. We consider the case of a manifold with a non-smooth boundary, as is the usual case of the cubic boxes commonly used in numerical relativity. The techniques discussed should be applicable to more general cases, as linearizations around more complicated backgrounds, and may be used to establish well posedness in the full non-linear case.
引用
收藏
页码:377 / 395
页数:19
相关论文
共 23 条
[1]   Gravitational wave extraction and outer boundary conditions by perturbative matching [J].
Abrahams, AM ;
Rezzolla, L ;
Rupright, ME ;
Anderson, A ;
Anninos, P ;
Baumgarte, TW ;
Bishop, NT ;
Brandt, SR ;
Browne, JC ;
Camarda, K ;
Choptuik, MW ;
Cook, GB ;
Correll, RR ;
Evans, CR ;
Finn, LS ;
Fox, GC ;
Gomez, R ;
Haupt, T ;
Huq, MF ;
Kidder, LE ;
Klasky, SA ;
Laguna, P ;
Landry, W ;
Lehner, L ;
Lenaghan, J ;
Marsa, RL ;
Masso, J ;
Matzner, RA ;
Mitra, S ;
Papadopoulos, P ;
Parashar, M ;
Saied, F ;
Saylor, PE ;
Scheel, MA ;
Seidel, E ;
Shapiro, SL ;
Shoemaker, D ;
Smarr, L ;
Szilagyi, B ;
Teukolsky, SA ;
van Putten, MHPM ;
Walker, P ;
Winicour, J ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 80 (09) :1812-1815
[2]   Fixing Einstein's equations [J].
Anderson, A ;
York, JW .
PHYSICAL REVIEW LETTERS, 1999, 82 (22) :4384-4387
[3]   Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1D colliding gravitational plane waves [J].
Bardeen, JM ;
Buchman, LT .
PHYSICAL REVIEW D, 2002, 65 (06)
[4]   Convergence and stability in numerical relativity [J].
Calabrese, G ;
Pullin, J ;
Sarbach, O ;
Tiglio, M .
PHYSICAL REVIEW D, 2002, 66 (04)
[5]   Constraint-preserving boundary conditions in numerical relativity [J].
Calabrese, G ;
Lehner, L ;
Tiglio, M .
PHYSICAL REVIEW D, 2002, 65 (10)
[6]   The initial boundary value problem for Einstein's vacuum field equation [J].
Friedrich, H ;
Nagy, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :619-655
[7]  
FRITZ J, 1982, APPL MATH SCI, V1
[8]  
Gustafsson B., 1995, TIME DEPENDENT PROBL, Vsecond
[9]   Free evolution of self-gravitating, spherically symmetric waves [J].
Iriondo, MS ;
Reula, OA .
PHYSICAL REVIEW D, 2002, 65 (04)
[10]   Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations [J].
Kidder, LE ;
Scheel, MA ;
Teukolsky, SA .
PHYSICAL REVIEW D, 2001, 64 (06)