On, around, and beyond Frobenius' theorem on division algebras

被引:0
作者
Bresar, Matej [1 ,2 ]
Shulman, Victor S. [3 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Vologda State Univ, Dept Math, Vologda, Russia
关键词
Frobenius' theorem; quaternions; division algebra; finite-dimensional algebra; Wedderburn's principal theorem; liftable roots; ELEMENTS;
D O I
10.1080/03081087.2020.1761281
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Frobenius' Theorem states that, besides the fields of real and complex numbers, the algebra of quaternions H is the only finitedimensional real division algebra. We first give a short elementary proof of this theorem, then characterize finite-dimensional real algebras that contain either a copy of C, a copy of H, or a pair of anticommuting invertible elements through the dimensions of their (left) ideals, and finally consider the problem of lifting algebraic elements modulo ideals.
引用
收藏
页码:1369 / 1381
页数:13
相关论文
共 13 条
[1]  
[Anonymous], 1878, J REINE ANGEW MATH
[2]   ALGEBRAIC ELEMENTS OF A BANACH ALGEBRA MODULO AN IDEAL [J].
BARNES, BA .
PACIFIC JOURNAL OF MATHEMATICS, 1985, 117 (02) :219-231
[3]  
Bott R., 1958, B AM MATH SOC, V64, P87, DOI DOI 10.1090/S0002-9904-1958-10166-4
[4]  
Brear M., 2014, UNIVERSITEXT
[5]   LIFTING ALGEBRAIC ELEMENTS IN C-ASTERISK-ALGEBRAS [J].
HADWIN, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 127 (02) :431-437
[6]  
Hungerford ThomasW., 1974, GRADUATE TEXTS MATH
[8]   Exchange rings, exchange equations, and lifting properties [J].
Khurana, Dinesh ;
Lam, T. Y. ;
Nielsen, Pace P. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2016, 26 (06) :1177-1198
[9]   LIFTING IDEMPOTENTS AND EXCHANGE RINGS [J].
NICHOLSON, WK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 229 (MAY) :269-278
[10]  
Pierce R.S., 1982, GRADUATE TEXTS MATH, V88