Low pressure conversion of CO2 to methanol over Cu/Zn/Al catalysts. The effect of Mg, Ca and Sr as basic promoters

被引:50
作者
Previtali, D. [1 ]
Longhi, M. [2 ]
Galli, F. [3 ]
Di Michele, A. [4 ]
Manenti, F. [1 ]
Signoretto, M. [5 ]
Menegazzo, F. [5 ]
Pirola, C. [2 ]
机构
[1] Politecn Milan, Dipartimento Chim Mat & Ingn Chim Giulio Natta, Piazza Leonardo da Vinci 32, Milan 20133, Italy
[2] Univ Milan, Dipartimento Chim, Via Golgi 19, Milan 20133, Italy
[3] Polytech Montreal, Dept Chem Engn, CP 6079,Succ CV, Montreal, PQ H3C 3A7, Canada
[4] Univ Perugia, Dipartimento Fis & Geol, Via Pascoli 1, Perugia 06123, Italy
[5] Univ Ca Foscari Venezia, Dipartimento Sci Mol & Nanosistemi, Via Torino 155, Venice 30170, Italy
关键词
Methanol; CZA; Ca doped CZA; CO2; Low pressure; CATALYTIC PERFORMANCE; THERMAL-DECOMPOSITION; DIMETHYL ETHER; CARBON CAPTURE; SYNTHESIS GAS; CRYSTAL SIZE; HYDROGENATION; OPTIMIZATION; H-ZSM-5; ESTERIFICATION;
D O I
10.1016/j.fuel.2020.117804
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Carbon dioxide concentration level is reaching a non-returning point. Carbon capture technologies are immature and short-term actions are necessary. The conversion of CO2 into methanol is a technical challenge. Commercial copper-zinc-alumina catalysts convert maximum 7% carbon dioxide in syngas at high pressures (5 MPa to 10 MPa) and moderate temperatures (473 K to 573 K) into methanol. However, there are not records on the synthesis of methanol at low pressure (P < 2.5 MPa) and without a large excess of hydrogen in the feed. Here, we tested three new catalysts prepared by co-precipitation of copper, zinc and aluminum nitrates (CZA), with strontium, magnesium or calcium as basic promoters to enhance CO2 conversion to methanol. We discussed the microstructure of the catalysts according to the supersaturation of the relative carbonates formed during the coprecipitation synthesis. Compared to the benchmark, the sample doped with Ca showed higher carbon conversion with all the feed compositions tested (syngas, synthetic biosyngas and CO2 with H-2). CZA doped with Sr is inactive in this reaction.
引用
收藏
页数:11
相关论文
共 72 条
[41]   Characterization of precursors of methanol synthesis catalysts, copper zinc aluminum oxides, precipitated at different pHs and temperatures [J].
Li, JL ;
Inui, T .
APPLIED CATALYSIS A-GENERAL, 1996, 137 (01) :105-117
[42]   Highly selective hydrogenation of CO2 to methanol over CuO-ZnO-ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method [J].
Li, Li ;
Mao, Dongsen ;
Yu, Jun ;
Guo, Xiaoming .
JOURNAL OF POWER SOURCES, 2015, 279 :394-404
[43]   Methanol synthesis from CO2 hydrogenation over copper catalysts supported on MgO-modified TiO2 [J].
Liu, Chaoheng ;
Guo, Xiaoming ;
Guo, Qiangsheng ;
Mao, Dongsen ;
Yu, Jun ;
Lu, Guanzhong .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2016, 425 :86-93
[44]   H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis [J].
Losch, Pit ;
Pinar, Ana B. ;
Willinger, Marc G. ;
Soukup, Karel ;
Chavan, Sachin ;
Vincent, Bruno ;
Pale, Patrick ;
Louis, Benoit .
JOURNAL OF CATALYSIS, 2017, 345 :11-23
[45]   Ultrasound-assisted impregnation for high temperature Fischer-Tropsch catalysts [J].
Louyot, Paul ;
Neagoe, Cristian ;
Galli, Federico ;
Pirola, Carlo ;
Patience, Gregory S. ;
Boffito, Daria C. .
ULTRASONICS SONOCHEMISTRY, 2018, 48 :523-531
[46]   Bridging the Time Gap: A Copper/Zinc Oxide/Aluminum Oxide Catalyst for Methanol Synthesis Studied under Industrially Relevant Conditions and Time Scales [J].
Lunkenbein, Thomas ;
Girgsdies, Frank ;
Kandemir, Timur ;
Thomas, Nygil ;
Behrens, Malte ;
Schloegl, Robert ;
Frei, Elias .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (41) :12708-12712
[47]   Thermodynamic analysis of hydrogen production by steam reforming [J].
Lutz, AE ;
Bradshaw, RW ;
Keller, JO ;
Witmer, DE .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (02) :159-167
[48]   Investigating the effect of metal oxide additives on the properties of Cu/ZnO/Al2O3 catalysts in methanol synthesis from syngas using factorial experimental design [J].
Meshkini, Fatemeh ;
Taghizadeh, Majid ;
Bahmani, Mohsen .
FUEL, 2010, 89 (01) :170-175
[49]   Alternative production of methanol from industrial CO2 [J].
Meunier, Nicolas ;
Chauvy, Remi ;
Mouhoubi, Seloua ;
Thomas, Diane ;
De Weireld, Guy .
RENEWABLE ENERGY, 2020, 146 :1192-1203
[50]   Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics [J].
Niu, Xianjun ;
Gao, Jie ;
Wang, Kai ;
Miao, Qing ;
Dong, Mei ;
Wang, Guofu ;
Fan, Weibin ;
Qin, Zhangfeng ;
Wang, Jianguo .
FUEL PROCESSING TECHNOLOGY, 2017, 157 :99-107