Admissible Orders on Fuzzy Numbers

被引:13
作者
Zumelzu, Nicolas [1 ]
Bedregal, Benjamin [2 ]
Mansilla, Edmundo [1 ]
Bustince, Humberto [3 ]
Diaz, Roberto [4 ]
机构
[1] Univ Magallanes, Fac Ciencias, Dept Matemat & Fis, Punta Arenas 6200000, Chile
[2] Univ Fed Rio Grande do Norte UFRN, Dept Informat & Matemat Aplicada DIMAp, BR-59078970 Natal, RN, Brazil
[3] Univ Publ Navarra UPNA, Inst Smart Cities, Dept Matemat Estadist & Informat, Pamplona 31006, Spain
[4] Univ Los Lagos, Dept Ciencias Exactas, Osorno 5290000, Chile
关键词
Fuzzy sets; Kernel; Shortest path problem; Writing; Upper bound; Uncertainty; Topology; Admissible orders; fuzzy numbers; fuzzy weighted graphs; orders on fuzzy numbers; SET;
D O I
10.1109/TFUZZ.2022.3160326
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
From the more than two hundred partial orders for fuzzy numbers proposed in the literature, only a few are total. In this article, we introduce the notion of admissible order for fuzzy numbers equipped with a partial order, i.e., a total order which refines the partial order. In particular, it is given special attention to the partial order proposed by Klir and Yuan in 1995. Moreover, we propose a method to construct admissible orders on fuzzy numbers in terms of linear orders defined for intervals considering a strictly increasing upper dense sequence, proving that this order is admissible for a given partial order. Finally, we use admissible orders to ranking the path costs in fuzzy weighted graphs.
引用
收藏
页码:4788 / 4799
页数:12
相关论文
共 45 条
[1]   On Two-Player Interval-Valued Fuzzy Bayesian Games [J].
Asmus, Tiago C. ;
Dimuro, Gracaliz P. ;
Bedregal, Benjamin .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2017, 32 (06) :557-596
[2]  
Bector C.R., 2005, FUZZY MATH PROGRAMMI, V169
[3]   Decision making with an interval-valued fuzzy preference relation and admissible orders [J].
Bentkowska, Urszula ;
Bustince, Humberto ;
Jurio, Aranzazu ;
Pagola, Miguel ;
Pekala, Barbara .
APPLIED SOFT COMPUTING, 2015, 35 :792-801
[4]  
Bondy A., 2008, GRAPH THEORY, V244
[5]  
Buckley J. J., 2002, INTRO FUZZY LOGIC FU, V13
[6]   Generation of linear orders for intervals by means of aggregation functions [J].
Bustince, H. ;
Fernandez, J. ;
Kolesarova, A. ;
Mesiar, R. .
FUZZY SETS AND SYSTEMS, 2013, 220 :69-77
[7]   A New Approach to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued Fuzzy Set Applications [J].
Bustince, Humberto ;
Galar, Mikel ;
Bedregal, Benjamin ;
Kolesarova, Anna ;
Mesiar, Radko .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (06) :1150-1162
[8]   A Protocol for Deciding on the Location of Production Unit Using Fuzzy Economic Variables [J].
Choudhury, Binayak S. ;
Khatua, D. ;
Saha, P. ;
Dhara, P. S. .
FUZZY INFORMATION AND ENGINEERING, 2018, 10 (04) :408-417
[9]  
Cormen T.H., 2009, INTRO ALGORITHMS
[10]   Shortest paths in fuzzy weighted graphs [J].
Cornelis, C ;
De Kesel, P ;
Kerre, EE .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2004, 19 (11) :1051-1068