Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits

被引:77
作者
Kiktenko, E. O. [1 ,2 ]
Fedorov, A. K. [1 ,3 ]
Strakhov, A. A. [4 ]
Man'ko, V. I. [4 ,5 ]
机构
[1] Bauman Moscow State Tech Univ, Moscow 105005, Russia
[2] Russian Acad Sci, Geoelectromagnet Res Ctr, Schmidt Inst Phys Earth, Troitsk 142190, Moscow Region, Russia
[3] Russian Quantum Ctr, Moscow 143025, Russia
[4] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[5] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
关键词
IMPLEMENTATION;
D O I
10.1016/j.physleta.2015.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Design of a large-scale quantum computer has paramount importance for science and technologies. We investigate a scheme for realization of quantum algorithms using noncomposite quantum systems, i.e., systems without subsystems. In this framework, n artificially allocated "subsystems" play a role of qubits in n-qubits quantum algorithms. With focus on two-qubit quantum algorithms, we demonstrate a realization of the universal set of gates using a d = 5 single qudit state. Manipulation with an ancillary level in the systems allows effective implementation of operators from U(4) group via operators from SU(5) group. Using a possible experimental realization of such systems through anharmonic superconducting many-level quantum circuits, we present a blueprint for a single qudit realization of the Deutsch algorithm, which generalizes previously studied realization based on the virtual spin representation (Kessel et al., 2002 [9]). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1409 / 1413
页数:5
相关论文
共 52 条
[11]   Generalized Qubit Portrait of the Qutrit-State Density Matrix [J].
Chernega, Vladimir N. ;
Man'ko, Olga V. ;
Man'ko, Vladimir I. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2013, 34 (04) :383-387
[12]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117
[13]  
Devoret M. H., 2004, ARXIVCONDMAT0411174
[14]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[15]   Security of quantum key distribution with entangled qutrits [J].
Durt, T ;
Cerf, NJ ;
Gisin, N ;
Zukowski, M .
PHYSICAL REVIEW A, 2003, 67 (01)
[16]   Implementation of a Toffoli gate with superconducting circuits [J].
Fedorov, A. ;
Steffen, L. ;
Baur, M. ;
da Silva, M. P. ;
Wallraff, A. .
NATURE, 2012, 481 (7380) :170-172
[17]  
Fedorov A K, ARXIV14110157
[18]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[19]   Computational speed-up with a single qudit [J].
Gedik, Z. ;
Silva, I. A. ;
Cakmak, B. ;
Karpat, G. ;
Vidoto, E. L. G. ;
Soares-Pinto, D. O. ;
deAzevedo, E. R. ;
Fanchini, F. F. .
SCIENTIFIC REPORTS, 2015, 5
[20]  
Grover L.K., 1996, P 28 ANN ACM S THEOR, P212, DOI [10.1145/237814.237866, DOI 10.1145/237814.237866]