Performance evaluation of a parallel sparse lattice Boltzmann solver

被引:40
作者
Axner, L. [1 ]
Bernsdorf, J. [2 ]
Zeiser, T. [3 ]
Lammers, P. [4 ]
Linxweiler, J. [5 ]
Hoekstra, A. G. [1 ]
机构
[1] Univ Amsterdam, Fac Sci, Sect Computat Sci, NL-1098 SJ Amsterdam, Netherlands
[2] NEC Europe Ltd, NEC Labs Europe, D-53757 St Augustin, Germany
[3] Univ Erlangen Nurnberg, Reg Rechenzentrum Erlangen, D-91058 Erlangen, Germany
[4] HLRS, D-70569 Stuttgart, Germany
[5] Inst Computat Modeling Civil Engn, D-38106 Braunschweig, Germany
关键词
sparse lattice Boltzmann; partitioning; METIS; MPI performance measurements; optimization; performance prediction;
D O I
10.1016/j.jcp.2008.01.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop a performance prediction model for a parallelized sparse lattice Boltzmann solver and present performance results for simulations of flow in a variety of complex geometries. A special focus is on partitioning and memory/load balancing strategy for geometries with a high solid fraction and/or complex topology such as porous media, fissured rocks and geometries from medical applications. The topology of the lattice nodes representing the fluid fraction of the computational domain is mapped on a graph. Graph decomposition is performed with both multilevel recursive-bisection and multilevel k-way schemes based on modified Kernighan-Lin and Fiduccia-Mattheyses partitioning algorithms. Performance results and optimization strategies are presented for a variety of platforms, showing a parallel efficiency of almost 80% for the largest problem size. A good agreement between the performance model and experimental results is demonstrated. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:4895 / 4911
页数:17
相关论文
共 29 条
[1]  
ABDEL MM, 2003, INT J MODERN PHYS B, V17, P95
[2]  
ABOURJEILI A, 2006, IEEE INT PAR DISTR P, V10
[3]  
[Anonymous], 2006, PARALLEL COMPUTATION
[4]   Mesoscopic simulations of systolic flow in the human abdominal aorta [J].
Artoli, AM ;
Hoekstra, AG ;
Sloot, PMA .
JOURNAL OF BIOMECHANICS, 2006, 39 (05) :873-884
[5]   Optimizing lattice Boltzmann simulations for unsteady flows [J].
Artoli, AM ;
Hoekstra, AG ;
Sloot, PMA .
COMPUTERS & FLUIDS, 2006, 35 (02) :227-240
[6]  
BERNSDORF J, 2006, P HIGH PERF COMP CTR
[7]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[8]   LATTICE BOLTZMANN COMPUTATIONAL FLUID-DYNAMICS IN 3 DIMENSIONS [J].
CHEN, SY ;
WANG, Z ;
SHAN, XW ;
DOOLEN, GD .
JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (3-4) :379-400
[9]   Hydraulic permeability of (un)bounded fibrous media using the lattice Boltzmann method [J].
Clague, DS ;
Kandhai, BD ;
Zhang, R ;
Sloot, PMA .
PHYSICAL REVIEW E, 2000, 61 (01) :616-625
[10]   Application of the lattice Boltzmann method to transition in oscillatory channel flow [J].
Cosgrove, JA ;
Buick, JM ;
Tonge, SJ ;
Munro, CG ;
Greated, CA ;
Campbell, DM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (10) :2609-2620