Supergravity as generalised geometry I: type II theories

被引:209
作者
Coimbra, Andre [1 ]
Strickland-Constable, Charles [1 ]
Waldram, Daniel [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
关键词
Flux compactifications; Differential and Algebraic Geometry; Supergravity Models; String Duality; T-DUALITY; E-11; FIELDS;
D O I
10.1007/JHEP11(2011)091
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We reformulate ten-dimensional type II supergravity as a generalised geometrical analogue of Einstein gravity, defined by an O(9, 1) x O(1, 9) subset of O(10, 10) x R+ structure on the generalised tangent space. Using the notion of generalised connection and torsion, we introduce the analogue of the Levi-Civita connection, and derive the corresponding tensorial measures of generalised curvature. We show how, to leading order in the fermion fields, these structures allow one to rewrite the action, equations of motion and supersymmetry variations in a simple, manifestly Spin(9, 1) x Spin(1, 9)-covariant form. The same formalism also describes d-dimensional compactifications to flat space.
引用
收藏
页数:35
相关论文
共 59 条
[1]  
Alekseev A., 2001, Derived brackets and courant algebroids
[2]   A ten-dimensional action for non-geometric fluxes [J].
Andriot, David ;
Larfors, Magdalena ;
Luest, Dieter ;
Patalong, Peter .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09)
[3]  
BERGLUND P, HEPTH0504058, P9
[4]   New formulations of D=10 supersymmetry and D8-O8 domain walls [J].
Bergshoeff, E ;
Kallosh, R ;
Ortín, T ;
Roest, D ;
Van Proeyen, A .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (17) :3359-3382
[5]   Generalized geometry and M theory [J].
Berman, David S. ;
Perry, Malcolm J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (06)
[6]   SO(5,5) duality in M-theory and generalized geometry [J].
Berman, David S. ;
Godazgar, Hadi ;
Perry, Malcolm J. .
PHYSICS LETTERS B, 2011, 700 (01) :65-67
[7]   T-duality and Ramond-Ramond backgrounds in the Matrix model [J].
Brace, D ;
Morariu, B ;
Zumino, B .
NUCLEAR PHYSICS B, 1999, 549 (1-2) :181-193
[8]  
Chen Z., ARXIV09090319
[9]  
COIMBRA A, IN PRESS
[10]   Connecting T-duality invariant theories [J].
Copland, Neil B. .
NUCLEAR PHYSICS B, 2012, 854 (03) :575-591