Computer simulation of water desalination through boron nitride nanotubes

被引:31
作者
Liang, Lijun [1 ]
Li, Jia-Chen [2 ]
Zhang, Li [2 ]
Zhang, Zhisen [3 ]
Shen, Jia-Wei [4 ]
Li, Lihua [1 ]
Wu, Jianyang [3 ]
机构
[1] Hangzhou Dianzi Univ, Coll Life Informat Sci & Instrument Engn, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Sci Tech Univ, Dept Chem, Hangzhou, Zhejiang, Peoples R China
[3] Xiamen Univ, Res Inst Biomimet & Soft Matter, Dept Phys, Fujian Prov Key Lab Soft Funct Mat, Xiamen 361005, Peoples R China
[4] Hangzhou Normal Univ, Sch Med, Hangzhou 310016, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS; ION SELECTIVITY; CARBON; FUTURE; NANOMATERIALS; TRANSPORT; MEMBRANES; PURIFICATION; NANOPORES; EFFICIENT;
D O I
10.1039/c7cp06230c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of high-efficiency and low-cost seawater desalination technologies is critical to solving the global water crisis. Herein we report a fast water filtering method with high salt rejection by boron nitride nanotubes (BNNTs). The effect of the radius of BNNTs on water filtering and salt rejection was investigated by molecular dynamics (MD) simulation. Our simulation results demonstrate that fast water permeation and high salt rejection could be achieved by BNNT(7,7) under both high pressure and low pressure. The potential of mean force (PMF) of Na+ ion and water molecule through BNNT(7,7) further revealed the mechanism of seawater desalination by BNNT(7,7). Using BNNT(7,7) array, a 10 cm(2) nanotube membrane with 1.5 x 10(13) pores per cm(2) will produce freshwater with a flow rate of 98 L per day per MPa under 100 MPa. Our study shows the potential application of BNNTs membrane for fast and efficient desalination.
引用
收藏
页码:30031 / 30038
页数:8
相关论文
共 58 条
[1]   Molecular Simulation of Water in Carbon Nanotubes [J].
Alexiadis, Alessio ;
Kassinos, Stavros .
CHEMICAL REVIEWS, 2008, 108 (12) :5014-5034
[2]   Molecular Dynamics Study of Carbon Nanotubes/Polyamide Reverse Osmosis Membranes: Polymerization, Structure, and Hydration [J].
Araki, Takumi ;
Cruz-Silva, Rodolfo ;
Tejima, Syogo ;
Takeuchi, Kenji ;
Hayashi, Takuya ;
Inukai, Shigeki ;
Noguchi, Toru ;
Tanioka, Akihiko ;
Kawaguchi, Takeyuki ;
Terrones, Mauricio ;
Endo, Morinobu .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (44) :24566-24575
[3]   Desalination techniques - A review of the opportunities for desalination in agriculture [J].
Burn, Stewart ;
Hoang, Manh ;
Zarzo, Domingo ;
Olewniak, Frank ;
Campos, Elena ;
Bolto, Brian ;
Barron, Olga .
DESALINATION, 2015, 364 :2-16
[4]   Cellulose Nanomaterials in Water Treatment Technologies [J].
Carpenter, Alexis Wells ;
de Lannoy, Charles-Francois ;
Wiesner, Mark R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (09) :5277-5287
[5]   Water Desalination across Nanoporous Graphene [J].
Cohen-Tanugi, David ;
Grossman, Jeffrey C. .
NANO LETTERS, 2012, 12 (07) :3602-3608
[6]   Designing carbon nanotube membranes for efficient water desalination [J].
Corry, Ben .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (05) :1427-1434
[7]   Water and ion transport through functionalised carbon nanotubes: implications for desalination technology [J].
Corry, Ben .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :751-759
[8]  
Cosgrove W.J., 2014, World water vision: making water everybody's business
[9]   Recent applications of nanomaterials in water desalination: A critical review and future opportunities [J].
Daer, Sahar ;
Kharraz, Jehad ;
Giwa, Adewale ;
Hasan, Shadi Wajih .
DESALINATION, 2015, 367 :37-48
[10]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092