Big Data Analytics Architecture for Real-Time Traffic Control

被引:0
|
作者
Amini, Sasan [1 ]
Gerostathopoulos, Ilias [2 ]
Prehofer, Christian [2 ]
机构
[1] Tech Univ Munich, Chair Traff Engn & Control, Munich, Germany
[2] Tech Univ Munich, Fac Informat, Munich, Germany
来源
2017 5TH IEEE INTERNATIONAL CONFERENCE ON MODELS AND TECHNOLOGIES FOR INTELLIGENT TRANSPORTATION SYSTEMS (MT-ITS) | 2017年
关键词
Intelligent Transportation System; Big Data; Kafka; Real-time traffic control; PREDICTION; SYSTEMS; DEMAND; VIDEO;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The advent of Big Data has triggered disruptive changes in many fields including Intelligent Transportation Systems (ITS). The emerging connected technologies created around ubiquitous digital devices have opened unique opportunities to enhance the performance of the ITS. However, magnitude and heterogeneity of the Big Data are beyond the capabilities of the existing approaches in ITS. Therefore, there is a crucial need to develop new tools and systems to keep pace with the Big Data proliferation. In this paper, we propose a comprehensive and flexible architecture based on distributed computing platform for real-time traffic control. The architecture is based on systematic analysis of the requirements of the existing traffic control systems. In it, the Big Data analytics engine informs the control logic. We have partly realized the architecture in a prototype platform that employs Kafka, a state-of-the-art Big Data tool for building data pipelines and stream processing. We demonstrate our approach on a case study of controlling the opening and closing of a freeway hard shoulder lane in microscopic traffic simulation.
引用
收藏
页码:710 / 715
页数:6
相关论文
共 50 条
  • [1] A Big Data Architecture for Near Real-time Traffic Analytics
    Gong, Yikai
    Rimba, Paul
    Sinnott, Richard O.
    COMPANION PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC'17 COMPANION), 2017, : 157 - 162
  • [2] Real Time Traffic Control Using Big Data Analytics
    Verma, Rauhil
    Paygude, Priyanka
    Chaudhary, Snehal
    Idate, Sonali
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 637 - 641
  • [3] Real-Time Big Data Analytics and Proactive Traffic Safety Management Visualization System
    Abdel-Aty, Mohamed
    Zheng, Ou
    Wu, Yina
    Abdelraouf, Amr
    Rim, Heesub
    Li, Pei
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (08)
  • [4] Big Data Stream Computing in Healthcare Real-Time Analytics
    Ta, Van-Dai
    Liu, Chuan-Ming
    Nkabinde, Goodwill Wandile
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2016), 2016, : 37 - 42
  • [5] Real-Time Large-Scale Big Data Networks Analytics and Visualization Architecture
    Chopade, Pravin
    Zhan, Justin
    Roy, Kaushik
    Flurchick, Kenneth
    2015 12TH INTERNATIONAL CONFERENCE & EXPO ON EMERGING TECHNOLOGIES FOR A SMARTER WORLD (CEWIT), 2015,
  • [6] Real-Time Big Data Analytics: Applications and Challenges
    Mohamed, Nader
    Al-Jaroodi, Jameela
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 305 - 310
  • [7] An incremental approach for real-time Big Data visual analytics
    Garcia, Ignacio
    Casado, Ruben
    Bouchachia, Abdelhamid
    2016 IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), 2016, : 177 - 182
  • [8] Real-time Big Data Analytics for Multimedia Transmission and Storage
    Wang, Kun
    Mi, Jun
    Xu, Chenhan
    Shu, Lei
    Deng, Der-Jiunn
    2016 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2016,
  • [9] Big Data Streaming Platforms to Support Real-time Analytics
    Fernandes, Eliana
    Salgado, Ana Carolina
    Bernardino, Jorge
    ICSOFT: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2020, : 426 - 433
  • [10] A Survey on Real-time Big Data Analytics: Applications and Tools
    Yadranjiaghdam, Babak
    Pool, Nathan
    Tabrizi, Nasseh
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 404 - 409