AN EXTENSION OF THE BOURGAIN-SARNAK-ZIEGLER THEOREM WITH MODULAR APPLICATIONS

被引:6
作者
Cafferata, M. [1 ]
Perelli, A. [2 ]
Zaccagnini, A. [1 ]
机构
[1] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
[2] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词
COEFFICIENTS; SUMS; RESONANCE; TWISTS;
D O I
10.1093/qmathj/haz048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first prove an extension of the Bourgain-Sarnak-Ziegler theorem, relaxing some conditions and giving quantitative estimates. Then we apply our extension to bound certain exponential sums, where the coefficients come from modular forms and the exponential involves polynomial sequences of any degree.
引用
收藏
页码:359 / 377
页数:19
相关论文
共 22 条
[1]  
BOURGAIN J., 2013, Dev. Math., V28, P67
[2]   ON THE ABSOLUTE VALUE OF RAMANUJANS TAU-FUNCTION [J].
ELLIOTT, PDTA ;
MORENO, CJ ;
SHAHIDI, F .
MATHEMATISCHE ANNALEN, 1984, 266 (04) :507-511
[3]   Strong orthogonality between the Mobius function, additive characters and Fourier coefficients of cusp forms [J].
Fouvry, Etienne ;
Ganguly, Satadal .
COMPOSITIO MATHEMATICA, 2014, 150 (05) :763-797
[4]  
Halberstam H., 1974, Sieve Methods, V4
[5]  
Hoffstein Jeffrey, 1995, Internat. Math. Res. Notices, V6, P279, DOI [10.1155/S1073792895000225, DOI 10.1155/S1073792895000225]
[6]  
Iwaniec H., 1997, GRADUATE STUDIES MAT
[7]   ON EXPONENTIAL-SUMS INVOLVING THE RAMANUJAN FUNCTION [J].
JUTILA, M .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1987, 97 (1-3) :157-166
[8]  
Jutila M., 1987, Lectures on a method in the theory of exponential sums, volume 80 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Published for the Tata Institute of Fundamental Research, pviii+
[9]   Twists and resonance of L-functions, I [J].
Kaczorowski, J. ;
Perelli, A. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (06) :1349-1389
[10]   Twists and Resonance of L-Functions, II [J].
Kaczorowski, Jerzy ;
Perelli, Alberto .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (24) :7637-7670