Holographic acoustic tweezers

被引:436
作者
Marzo, Asier [1 ,2 ]
Drinkwater, Bruce W. [1 ]
机构
[1] Univ Bristol, Fac Engn, Bristol BS8 1TR, Avon, England
[2] Univ Publ Navarra, UpnaLab, Campus Arrosadia, Pamplona 31006, Spain
基金
英国工程与自然科学研究理事会;
关键词
acoustic tweezers; contactless manipulation; acoustic levitation; acoustophoresis; displays; OPTICAL TWEEZERS; MANIPULATION; FORCE; TRANSDUCER; SYSTEM; ATOMS; CELLS; TRAP;
D O I
10.1073/pnas.1813047115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acoustic tweezers use sound radiation forces to manipulate matter without contact. They provide unique characteristics compared with the more established optical tweezers, such as higher trapping forces per unit input power and the ability to manipulate objects from the micrometer to the centimeter scale. They also enable the trapping of a wide range of sample materials in various media. A dramatic advancement in optical tweezers was the development of holographic optical tweezers (HOT) which enabled the independent manipulation of multiple particles leading to applications such as the assembly of 3D microstructures and the probing of soft matter. Now, 20 years after the development of HOT, we present the realization of holographic acoustic tweezers (HAT). We experimentally demonstrate a 40-kHz airborne HAT system implemented using two 256-emitter phased arrays and manipulate individually up to 25 millimetric particles simultaneously. We show that the maximum trapping forces are achieved once the emitting array satisfies Nyquist sampling and an emission phase discretization below pi/8 radians. When considered on the scale of a wavelength, HAT provides similar manipulation capabilities as HOT while retaining its unique characteristics. The examples shown here suggest the future use of HAT for novel forms of displays in which the objects are made of physical levitating voxels, assembly processes in the micrometer and millimetric scale, as well as positioning and orientation of multiple objects which could lead to biomedical applications.
引用
收藏
页码:84 / 89
页数:6
相关论文
共 55 条
[1]   Manipulation and assembly of nanowires with holographic optical traps [J].
Agarwal, R ;
Ladavac, K ;
Roichman, Y ;
Yu, GH ;
Lieber, CM ;
Grier, DG .
OPTICS EXPRESS, 2005, 13 (22) :8906-8912
[2]  
Airy G B., 1835, Transactions of the Cambridge Philosophical Society, V5, P283
[3]  
[Anonymous], 1879, LONDON EDINBURGH DUB, DOI DOI 10.1080/14786447908639684
[4]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[5]   OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA [J].
ASHKIN, A ;
DZIEDZIC, JM .
SCIENCE, 1987, 235 (4795) :1517-1520
[6]   Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers [J].
Baresch, Diego ;
Thomas, Jean-Louis ;
Marchiano, Regis .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[7]   Acoustic physics - Suspended by sound [J].
Brandt, EH .
NATURE, 2001, 413 (6855) :474-475
[8]   Acoustofluidics 7: The acoustic radiation force on small particles [J].
Bruus, Henrik .
LAB ON A CHIP, 2012, 12 (06) :1014-1021
[9]   Multiple optical trapping and binding: new routes to self-assembly [J].
Cizmar, T. ;
Romero, L. C. Davila ;
Dholakia, K. ;
Andrews, D. L. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (10)
[10]   Independent trapping and manipulation of microparticles using dexterous acoustic tweezers [J].
Courtney, Charles R. P. ;
Demore, Christine E. M. ;
Wu, Hongxiao ;
Grinenko, Alon ;
Wilcox, Paul D. ;
Cochran, Sandy ;
Drinkwater, Bruce W. .
APPLIED PHYSICS LETTERS, 2014, 104 (15)