Low-loss terahertz ribbon waveguides

被引:78
|
作者
Yeh, C
Shimabukuro, F
Siegel, PH
机构
[1] Calif Adv Studies, Santa Monica, CA 90403 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
D O I
10.1364/AO.44.005937
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The submillimeter wave or terahertz (THz) band (1 mm-100 mu m) is one of the last unexplored frontiers in the electromagnetic spectrum. A major stumbling block hampering instrument deployment in this frequency regime is the lack of a low-loss guiding structure equivalent to the optical fiber that is so prevalent at the visible wavelengths. The presence of strong inherent vibrational absorption bands in solids and the high skin-depth losses of conductors make the traditional microstripline circuits, conventional dielectric lines, or metallic waveguides, which are common at microwave frequencies, much too lossy to be used in the THz bands. Even the modern surface plasmon polariton waveguides are much too lossy for long-distance transmission in the THz bands. We describe a concept for overcoming this drawback and describe a new family of ultra-low-loss ribbon-based guide structures and matching components for propagating single-mode THz signals. For straight runs this ribbon-based waveguide can provide an attenuation constant that is more than 100 times less than that of a conventional dielectric or metallic waveguide. Problems dealing with efficient coupling of power into and out of the ribbon guide, achieving low-loss bends and branches, and forming THz circuit elements are discussed in detail. One notes that active circuit elements can be integrated directly onto the ribbon structure (when it is made with semiconductor material) and that the absence of metallic structures in the ribbon guide provides the possibility of high-power carrying capability. It thus appears that this ribbon-based dielectric waveguide and associated components can be used as fundamental building blocks for a new generation of ultra-high-speed electronic integrated circuits or THz interconnects. (c) 2005 Optical Society of America.
引用
收藏
页码:5937 / 5946
页数:10
相关论文
共 50 条
  • [11] WIDE RECTANGULAR LOW-LOSS WAVEGUIDES
    KAZANTSEV, YN
    KHARLASHKIN, OA
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1971, 16 (06): : 1040 - +
  • [12] Low-loss filters in rectangular waveguides
    Alessandri, F
    Comparini, M
    Guglielmi, M
    Schmitt, D
    Vitulli, F
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 27 (01) : 7 - 9
  • [13] The design of low-loss curved waveguides
    Robert N. Sheehan
    Steven Horne
    Frank H. Peters
    Optical and Quantum Electronics, 2008, 40 : 1211 - 1218
  • [14] LOW-LOSS OPTICAL-WAVEGUIDES
    BIELAWASKI, WB
    ELECTRONIC ENGINEERING, 1974, 46 (555): : 59 - +
  • [15] The design of low-loss curved waveguides
    Sheehan, Robert N.
    Horne, Steven
    Peters, Frank H.
    OPTICAL AND QUANTUM ELECTRONICS, 2008, 40 (14-15) : 1211 - 1218
  • [16] Low-loss polymers for terahertz applications
    Podzorov, Alexander
    Gallot, Guilhern
    APPLIED OPTICS, 2008, 47 (18) : 3254 - 3257
  • [17] Low-loss terahertz superconducting plasmonics
    Tsiatmas, Anagnostis
    Fedotov, Vassili A.
    Javier Garcia de Abajo, F.
    Zheludev, Nikolay I.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [18] Low-loss and dispersion flattened terahertz
    Islam, Raonaqul
    Kaijage, Shubi Felix
    Rana, Sohel
    OPTIK, 2021, 229
  • [19] Low-loss silicide/silicon plasmonic ribbon waveguides for mid- and far-infrared applications
    Choi, Sang-Yeon
    Soref, Richard A.
    OPTICS LETTERS, 2009, 34 (12) : 1759 - 1761
  • [20] Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion
    Waechter, Markus
    Nagel, Michael
    Kurz, Heinrich
    APPLIED PHYSICS LETTERS, 2008, 92 (16)