A posteriori error estimates with boundary correction for a cut finite element method

被引:8
作者
Burman, Erik [1 ]
He, Cuiyu [1 ]
Larson, Mats G. [2 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
[2] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
fictitious domain; CutFEM; a posteriori error estimation; AMR; FICTITIOUS DOMAIN METHOD; ELLIPTIC PROBLEMS;
D O I
10.1093/imanum/draa085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce, analyze and implement a residual-based a posteriori error estimation for the CutFEM fictitious domain method applied to an elliptic model problem. We consider the problem with smooth (nonpolygonal) boundary and, therefore, the analysis takes into account both the geometry approximation error on the boundary and the numerical approximation error. Theoretically, we can prove that the error estimation is both reliable and efficient. Moreover, the error estimation is robust in the sense that both the reliability and efficiency constants are independent of the arbitrary boundary-mesh intersection.
引用
收藏
页码:333 / 362
页数:30
相关论文
共 35 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]   Computable error bounds for finite element approximation on nonpolygonal domains [J].
Ainsworth, Mark ;
Rankin, Richard .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (02) :604-645
[3]   The aggregated unfitted finite element method for elliptic problems [J].
Badia, Santiago ;
Verdugo, Francesc ;
Martin, Alberto F. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 336 :533-553
[4]   A FINITE-ELEMENT METHOD FOR SOLVING ELLIPTIC-EQUATIONS WITH NEUMANN DATA ON A CURVED BOUNDARY USING UNFITTED MESHES [J].
BARRETT, JW ;
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1984, 4 (03) :309-325
[5]   AN OPTIMAL ADAPTIVE FICTITIOUS DOMAIN METHOD [J].
Berrone, Stefano ;
Bonito, Andrea ;
Stevenson, Rob ;
Verani, Marco .
MATHEMATICS OF COMPUTATION, 2019, 88 (319) :2101-2134
[6]  
Bertoluzza S, 2005, LECT NOTES COMP SCI, V40, P513
[7]   Fictitious domain method with boundary value correction using penalty-free Nitsche method [J].
Boiveau, Thomas ;
Burman, Erik ;
Claus, Susanne ;
Larson, Mats .
JOURNAL OF NUMERICAL MATHEMATICS, 2018, 26 (02) :77-95
[8]  
BRAMBLE JH, 1994, MATH COMPUT, V63, P1, DOI 10.1090/S0025-5718-1994-1242055-6
[9]   A simple finite element method for elliptic bulk problems with embedded surfaces [J].
Burman, Erik ;
Hansbo, Peter ;
Larson, Mats G. .
COMPUTATIONAL GEOSCIENCES, 2019, 23 (01) :189-199
[10]   AN UNFITTED HYBRID HIGH-ORDER METHOD FOR ELLIPTIC INTERFACE PROBLEMS [J].
Burman, Erik ;
Ern, Alexandre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) :1525-1546