Random Forest Adjustment for Approximate Bayesian Computation

被引:3
作者
Bi, Jiefeng [1 ]
Shen, Weining [2 ]
Zhu, Weixuan [3 ]
机构
[1] Xiamen Univ, Wang Yanan Inst Studies Econ WISE, Xiamen, Peoples R China
[2] Univ Calif Irvine, Dept Stat, Irvine, CA USA
[3] Xiamen Univ, Sch Econ, Wang Yanan Inst Studies Econ WISE, Dept Stat & Data Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Approximate Bayesian computation; Conditional density estimation; Likelihood-free inference; Random forest; Regression adjustment; POPULATION HISTORY; ABC; PARAMETERS; INFERENCE;
D O I
10.1080/10618600.2021.1981341
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a novel method for regression adjustment in approximate Bayesian computation to help improve the accuracy and computational efficiency of the posterior inference. The proposed method uses random forest regression to model the connection between summary statistics and the parameters of interest. Compared with existing approaches, the proposed method bypasses the need of preselection of summary statistics in the model, and is capable of capturing the potential nonlinear relationship between the parameters of interest and summary statistics. We also introduce a measure to quantify the importance of each summary statistic used in the model. We study the asymptotic properties of the proposed estimator and show that it has an excellent finite-sample numerical performance via two simulation examples and an application to a population genetic study.
引用
收藏
页码:64 / 73
页数:10
相关论文
共 40 条
  • [1] Advances in Computer Simulation of Genome Evolution: Toward More Realistic Evolutionary Genomics Analysis by Approximate Bayesian Computation
    Arenas, Miguel
    [J]. JOURNAL OF MOLECULAR EVOLUTION, 2015, 80 (3-4) : 189 - 192
  • [2] GENERALIZED RANDOM FORESTS
    Athey, Susan
    Tibshirani, Julie
    Wager, Stefan
    [J]. ANNALS OF STATISTICS, 2019, 47 (02) : 1148 - 1178
  • [3] Beaumont MA, 2002, GENETICS, V162, P2025
  • [4] A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation
    Blum, M. G. B.
    Nunes, M. A.
    Prangle, D.
    Sisson, S. A.
    [J]. STATISTICAL SCIENCE, 2013, 28 (02) : 189 - 208
  • [5] Approximate Bayesian Computation: A Nonparametric Perspective
    Blum, Michael G. B.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1178 - 1187
  • [6] HIV with contact tracing: a case study in approximate Bayesian computation
    Blum, Michael G. B.
    Tran, Viet Chi
    [J]. BIOSTATISTICS, 2010, 11 (04) : 644 - 660
  • [7] Non-linear regression models for Approximate Bayesian Computation
    Blum, Michael G. B.
    Francois, Olivier
    [J]. STATISTICS AND COMPUTING, 2010, 20 (01) : 63 - 73
  • [8] Inference for stereological extremes
    Bortot, P.
    Coles, S. G.
    Sisson, S. A.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 84 - 92
  • [9] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [10] Detecting Concerted Demographic Response across Community Assemblages Using Hierarchical Approximate Bayesian Computation
    Chan, Yvonne L.
    Schanzenbach, David
    Hickerson, Michael J.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2014, 31 (09) : 2501 - 2515