Effects of Sample Size on Plant Single-Cell RNA Profiling

被引:5
作者
Chen, Hongyu [1 ,2 ]
Lv, Yang [3 ,4 ]
Yin, Xinxin [1 ,2 ]
Chen, Xi [1 ,2 ]
Chu, Qinjie [1 ,2 ]
Zhu, Qian-Hao [5 ]
Fan, Longjiang [1 ,2 ,6 ]
Guo, Longbiao [3 ]
机构
[1] Zhejiang Univ, Inst Crop Sci, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Inst Bioinformat, Hangzhou 310027, Peoples R China
[3] China Natl Rice Res Inst, State Key Lab Rice Biol, Hangzhou 310006, Peoples R China
[4] Shenyang Agr Univ, Rice Res Inst, Shenyang 110866, Peoples R China
[5] CSIRO Agr & Food, Black Mt Lab, GPO Box 1700, Canberra, ACT 2601, Australia
[6] Zhejiang Univ City Coll, Sch Med, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
single-cell RNA (scRNA); cell number; sampling coverage; Arabidopsis thaliana; SEQUENCING REVEALS; EXPRESSION; LANDSCAPE; SEQ;
D O I
10.3390/cimb43030119
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA (scRNA) profiling or scRNA-sequencing (scRNA-seq) makes it possible to parallelly investigate diverse molecular features of multiple types of cells in a given plant tissue and discover cell developmental processes. In this study, we evaluated the effects of sample size (i.e., cell number) on the outcome of single-cell transcriptome analysis by sampling different numbers of cells from a pool of ~57,000 Arabidopsis thaliana root cells integrated from five published studies. Our results indicated that the most significant principal components could be achieved when 20,000-30,000 cells were sampled, a relatively high reliability of cell clustering could be achieved by using ~20,000 cells with little further improvement by using more cells, 96% of the differentially expressed genes could be successfully identified with no more than 20,000 cells, and a relatively stable pseudotime could be estimated in the subsample with 5000 cells. Finally, our results provide a general guide for optimizing sample size to be used in plant scRNA-seq studies.
引用
收藏
页码:1685 / 1697
页数:13
相关论文
共 38 条
[1]   Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves [J].
Bezrutczyk, Margaret ;
Zoellner, Nora R. ;
Kruse, Colin P. S. ;
Hartwig, Thomas ;
Lautwein, Tobias ;
Koehrer, Karl ;
Frommer, Wolf B. ;
Kim, Ji-Yun .
PLANT CELL, 2021, 33 (03) :531-547
[2]   Identification of cell types in a mouse brain single-cell atlas using low sampling coverage [J].
Bhaduri, Aparna ;
Nowakowski, Tomasz J. ;
Pollen, Alex A. ;
Kriegstein, Arnold R. .
BMC BIOLOGY, 2018, 16
[3]   A high-resolution root spatiotemporal map reveals dominant expression patterns [J].
Brady, Siobhan M. ;
Orlando, David A. ;
Lee, Ji-Young ;
Wang, Jean Y. ;
Koch, Jeremy ;
Dinneny, Jose R. ;
Mace, Daniel ;
Ohler, Uwe ;
Benfey, Philip N. .
SCIENCE, 2007, 318 (5851) :801-806
[4]   Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing [J].
Casasent, Anna K. ;
Schalck, Aislyn ;
Gao, Ruli ;
Sei, Emi ;
Long, Annalyssa ;
Pangburn, William ;
Casasent, Tod ;
Meric-Bernstam, Funda ;
Edgerton, Mary E. ;
Navin, Nicholas E. .
CELL, 2018, 172 (1-2) :205-+
[5]   SCOPIT: sample size calculations for single-cell sequencing experiments [J].
Davis, Alexander ;
Gao, Ruli ;
Navin, Nicholas E. .
BMC BIOINFORMATICS, 2019, 20 (01)
[6]   Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single-Cell RNA Sequencing [J].
Denyer, Tom ;
Ma, Xiaoli ;
Klesen, Simon ;
Scacchi, Emanuele ;
Nieselt, Kay ;
Timmermans, Marja C. P. .
DEVELOPMENTAL CELL, 2019, 48 (06) :840-+
[7]   UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts [J].
Diaz-Papkovich, Alex ;
Anderson-Trocme, Luke ;
Ben-Eghan, Chief ;
Gravel, Simon .
PLOS GENETICS, 2019, 15 (11)
[8]   GiniClust3: a fast and memory-efficient tool for rare cell type identification [J].
Dong, Rui ;
Yuan, Guo-Cheng .
BMC BIOINFORMATICS, 2020, 21 (01)
[9]   Root Regeneration Triggers an Embryo-like Sequence Guided by Hormonal Interactions [J].
Efroni, Idan ;
Mello, Alison ;
Nawy, Tal ;
Ip, Pui-Leng ;
Rahni, Ramin ;
DelRose, Nicholas ;
Powers, Ashley ;
Satija, Rahul ;
Birnbaum, Kenneth D. .
CELL, 2016, 165 (07) :1721-1733
[10]   The potential of single-cell profiling in plants [J].
Efroni, Idan ;
Birnbaum, Kenneth D. .
GENOME BIOLOGY, 2016, 17