Time-fractional variable-order telegraph equation involving operators with Mittag-Leffler kernel

被引:36
作者
Gomez-Aguilar, J. F. [1 ]
Atangana, Abdon [2 ]
机构
[1] CENIDET, CONACyT Tecnol Nacl Mexico, Interior Internado Palmira S-N, Col Cuernavaca, Morelos, Mexico
[2] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, Bloemfontein, South Africa
关键词
Fractional telegraph equation; Mittag-Leffler function; Crank-Nicholson scheme; Fractional variable-order derivative; 26A33; 65R10; 70Hxx; DIFFUSION;
D O I
10.1080/09205071.2018.1531791
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we have generalized the time-fractional telegraph equation involving operators with Mittag-Leffler kernel of variable order in Liouville-Caputo sense. The fractional variable-order equation was solved numerically via Crank-Nicholson scheme. We present the existence and uniqueness of the solution. Numerical simulations of the special solutions were done and new behaviors are obtained.
引用
收藏
页码:165 / 177
页数:13
相关论文
共 19 条
[1]   Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model [J].
Algahtani, Obaid Jefain Julaighim .
CHAOS SOLITONS & FRACTALS, 2016, 89 :552-559
[2]   Chua's circuit model with Atangana-Baleanu derivative with fractional order [J].
Alkahtani, Badr Saad T. .
CHAOS SOLITONS & FRACTALS, 2016, 89 :547-551
[3]  
[Anonymous], 2013, ABSTR APPL ANAL, DOI DOI 10.1155/2013/769102
[4]   Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order [J].
Atangana, Abdon ;
Koca, Ilknur .
CHAOS SOLITONS & FRACTALS, 2016, 89 :447-454
[5]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[7]   A generalized groundwater flow equation using the concept of variable-order derivative [J].
Atangana, Abdon ;
Botha, Joseph Francois .
BOUNDARY VALUE PROBLEMS, 2013,
[8]   Analytical solution for the time-fractional telegraph equation by the method of separating variables [J].
Chen, J. ;
Liu, F. ;
Anh, V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1364-1377
[9]   Mechanics with variable-order differential operators [J].
Coimbra, CFM .
ANNALEN DER PHYSIK, 2003, 12 (11-12) :692-703
[10]   Filtering using variable order vertical derivatives [J].
Cooper, GRJ ;
Cowan, DR .
COMPUTERS & GEOSCIENCES, 2004, 30 (05) :455-459